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Preface

This book provides a comprehensive self-contained account of Oka theory,
mainly concerned with the proofs of the Three Big Problems of approximation,
Cousin and pseudonvexity (Hartogs, Levi) stated below, which were solved by
Kiyoshi Oka and form the basics of complex analysis in several variables. It is the
purpose to serve a textbook in course lectures just after complex function theory of
one variable. The presentation is aimed to be readable, enjoyable and self-contained
for those from beginners in Mathematics to researchers interested in complex anal-
ysis in several variables and complex geometry.

The nature of the present book should be featured by the following two points:

• We develop the theory by the method of Oka’s Extension of holomorphic func-
tions from a complex submanifold of a polydisk to the whole polydisk (Oka’s
Jôku-Ikô Principle);

• We represent Oka’s original proofs, following his unpublished papers in 1943
and Oka IX (1953).

In those unpublished papers, historically in first, the pseudoconvexity problem
(Hartogs’ Inverse Problem, Levi’s Problem) was solved not only for domains of
Cn (n ≥ 2), but even for unramified domains over Cn (see [47], [41]).

We derive Oka’s Extension Theorem of Jôku-Ikô from the coherence of the sheaf
OCn of holomorphic functions on Cn (Oka’s First Coherence Theorem), which is
proved by Weierstrass’ Preparation Theorem; Weierstrass’ Preparation Theorem is
shown by the residue theorem in one variable. In this way we use only elementary
techniques, yet reaching the core of the theory.

The basis of analytic function theory of several variables or complex analysis in
several variables was founded till the first half of 1950’s. Just after it new theories
and generalizations were developed. Also the simplification of the theory has been
done, but the step-gap of the entrance part has remained to be rather high for the
beginners. The present book is aimed to provide a smooth introduction from the
theory of one variable to that of several variables (cf. [36], [40], [1]).

v
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The Three Big Problems which were summarized by Behnke–Thullen [3] in 1934
are stated as follows:
(P1) Approximation Problem (problem of developments) (Runge’s Theorem in

one variable).
(P2) Cousin Problem (I and II) (Mittag-Leffler’s and Weierstrass’ Theorems in one

variable).
(P3) Pseudoconvexity Problem (Hartogs’ Inverse Problem, Levi’s Problem) (the

natural boundary problem of analytic continuation).
K. Oka solved all these problem in Oka I—IX ([45], [46]), which are roughly

classified into two groups:
(G1) Oka I—VI+IX.
(G2) Oka VII, VIII, IX.
Oka IX contains works belonging to both of the groups, and the Three Big Problems
were solved by the first group (G1); in the second group (G2) he proved his Three
Coherence Theorems, aiming a development beyond the original problems.

In the present book we restrict ourselves to the results of group (G1); this is the
reason of the title with “Basic”. Here we do not use:

• General theory of cohomologies with coefficients in sheaves;
• L2-∂̄ method.

The solution of Pseudoconvexity Problem (P3) is the culmination of the works
(G1); Oka’s methods consist of

(i) (In VI, 1942; univalent domains of dim n = 2) Cousin Problem & Weil’s in-
tegral formula & Fredholm integral equation of the second kind;

(ii) (In VII–XI, 1943, unpublished (cf. [41]); unramified multivalent domains
over Cn of general n ≥ 2) Cousin Problem & “Primitive Coherence Theo-
rem” & Jôku-Ikô 1) & Fredholm integral equation of the second kind type;

(iii) (In IX, 1953, published; unramified multivalent domains over Cn of general
n ≥ 2) Cousin Problem & “Coherence Theorem” & Jôku-Ikô & Fredholm
integral equation of the second kind type;

After all, K. Oka proved Pseudoconvexity Problem (P3) three times. It is noticed
that in (ii) and (iii) above, Oka proved the Approximation Theorem and Cousin

1) This is a term after K. Oka himself, and also called the Jôku-Ikô Principle, which is the guiding
methodological principle of Oka theory. A direct translation might be “a transfer (=Ikô) to an upper
space (=Jôku)”. He found the principle in the study of Oka I (1936) and II (1937), and used it all
through his works, till Oka IX (1953). It is an idea to solve the problem caused with the increased
number of variables by increasing the number of variables more; one embeds the initial domains
into simply shaped polydisks of higher dimensions, extends the problems over the polydisks, and
then solves them by making use of the simplicity of polydisks.

In T. Nishino [34] the term was translated to the “Lifting Principle”. As a matter of fact, the
statement itself holds more generally for any subvarieties of Stein spaces, and so may be called
an analytic extension or interpolation; then, however, the spirit of the wording will be lost, since
the general case is proved through embeddings of analytic polyhedra into polydisks. So, here we
prefer to use the original term as in [36].
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Problem for unramified domains, multivalent in general, over Cn by a new method,
which had been proved for univalent domains in his former papers (I—III). The
content of Oka IX ((iii) above) is essentially the same as that of (ii) except for the
part of “Coherence Theorem” obtained in (G2).

In Oka VI ((i) above), he mentioned the validity of the result for general dimen-
sion n ≥ 2 in a modest phrase at the end of the paper:

L’auteur pense que cette conclusion sera aussi indépendante des nombres de vari-
ables complexes.

In fact, the method of (i) was later generalized to univalent domains of general di-
mension n by S. Hitotsumatsu [25] 1949, H.J. Bremermann [7] 1954, and F. Norguet
[42] 1954, independently. The method of (iii) was generalized for abstract complex
spaces by T. Nishino [33] 1962 (cf. [34]), and A. Andreotti–R. Narasimhan [2] 1964.

In (ii) above, Oka formulated and proved a kind of “Primitive Coherence The-
orem” with a certain condition, yet sufficient for the purpose, and he used some
Fredholm integral equation of the second kind type. In Oka IX, he replaced the
“Primitive Coherence Theorem” with his Coherence Theorems: the present book,
hopefully, presents an easy comprehensive account of that theory.

H. Cartan once has written ([46], p. XII):
.............

Mais il faut avouer que les aspects techniques de ses démonstrations et le mode
de présentation de ses résultats rendent difficile la tâche du lecteur, et que ce n’est
qu’au prix d’un réel effort que l’on parvient à saisir la portée de ses résultats, qui est
considérable. C’est pourquoi il est peut-être encore utile aujourd’hui, en hommage
au grand créateur que fut Kiyoshi OKA, de présenter l’ensemble de son œuvre.

.................

In English (by Noguchi),
.............

But we must admit that the technical aspects of his proofs and the mode of pre-
sentation of his results make it difficult to read, and that it is possible only at the
cost of a real effort to grasp the scope of its results, which is considerable. This
is why it is perhaps still useful today, for the homage of the great creator that was
Kiyoshi OKA, to present the collection of his work.

.................

It is interesting that, looking for an easier introduction of analytic function theory
of several variables, we came back to Oka’s original method.

To the best of the author’s knowledge, there is no book nor monograph present-
ing Oka’s original method except for Nishino [34], while there are many for the
developments or other proofs obtained after Oka’s works. The author hopes that the
present book fulfills the gap even a little, and is useful to recognize Oka’s original
ideas.

It should be worthwhile for students and researchers to look into the original
work of K. Oka, which may still contain some new ideas. Therefore the prerequi-
sites of the present book are made minimum with assuming the contents from stan-
dard complex analysis in one variable (cf., e.g., [35]), which range from Cauchy’s
integral formula to Riemann’s mapping theorem. We explain the necessary contents
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of topology, rings and modules; if they are not sufficient, it may suffice to confer
any nearby books on those elementary materials. We avoided the general notion of
manifolds.

Now we shortly describe the contents of the present book. In Chapter 1 we begin
with the definition of holomorphic or analytic functions of several variables, and
convergent power series. We then explain Hartogs’ phenomenon, which was the
starting point of analytic function theory of several variables. For the preparation
of the chapters in the sequel we show the Runge approximation theorem on convex
cylinder domains, the Cousin integral and analytic subsets.

Chapter 2 describes the notion of analytic sheaves and the coherence. Analytic
sheaves will be defined just as sets or as collections of rings or modules without
topology. We then show Weierstrass’ Preparation Theorem by making use of the
residue theorem in one variable. We then prove Oka’s First Coherence Theorem,
Cartan’s Matrix Lemma and then, Oka’s Syzygy Lemma, with which we finally
derive Oka’s Extension Theorem of Jôku-Ikô Principle.

Chapter 3 is devoted to the theory of domains of holomorphy and holomorphi-
cally convex domains. We prove foundational Cartan–Thullen’s Theorem, which
asserts the equivalence of those two domains in the univalent (schlicht) case. Then
an analytic polyhedron is introduced, and the Oka–Weil Approximation Theorem is
proved as a solution of the First Big Problem (P1) above by means of Jôku-Ikô. As
a special case of one variable, we show Runge’s Approximation Theorem.

Subsequently the Cousin Problem (the Second Big Problem (P2)) is dealt with.
Here we formulate the Continuous Cousin Problem by which we unify the treat-
ment of the Cousin I, II Problems and the problem of ∂̄ -equation for functions,
where the Oka Principle is included. We then solve the Continuous Cousin Prob-
lem on holomorphically convex domains, equivalently on domains of holomorphy
in the univalent case. We discuss the applications to the case of one variable, proving
Mittag-Leffler’s and Weierstrass’ Theorems.

As an application of the Continuous Cousin Problem we prove the Hartogs ex-
tension of holomorphic functions over a compact subset of a domain of Cn. By a
similar method of the proof of the Continuous Cousin Problem, we solve the inter-
polation problem for complex submanifolds of univalent domains of holomorphy.

At the end of Chapter 3 we introduce the notion of multivalent domains over Cn,
which are here assumed to be unramified. We define the envelope of holomorphy of
such a domain, and the notion of domains of holomorphy in the multivalent case.
We introduce Stein domains in the multivalent case, and see that the results obtained
for univalent domains of holomorphy remain to hold for multivalent Stein domains.

In Chapters 4 and 5 we deal with Pseudoconvexity Problem (P3) for domains over
Cn, where domains are assumed to be multivalent in general. Chapter 4 is devoted
to the formulations and the reductions of Problem (P3). Firstly, we introduce the
notion of plurisubharmonic functions. Using it, we prove Hartogs’ separate analyt-
icity theorem. Then, several kinds of pseudoconvexities of domains are defined. We
discuss the equivalence and the relations of those pseudoconvexities, and formulate
what is the pseudoconvexity problem. We then prove Oka’s Theorem of Boundary
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Distance Function. This serves the first important step toward the solution of Prob-
lem (P3). As an application we prove the Tube Theorem due to S. Bochner and K.
Stein (n = 2).

In the last Chapter 5 we solve finally the Pseudoconvexity Problem (P3), the last
of the Three Big Problems, which is formulated in the previous chapter. To begin
with, we introduce the notion of a semi-normed space, a Baire space and a Fréchet
space, and prove Banach’s Open Mapping Theorem for them. We then show Oka’s
Extension Theorem of Jôku-Ikô Principle with estimate.

We give two proofs of the Steinness of strongly pseudoconvex domains (Levi’s
Problem); the first is K. Oka’s and the second is the one due to H. Grauert; there
is some similarity in the two proofs, which should be interesting for comparison.T.
Nishino’s book [34] presents the proof of Oka IX (1953) in more generalized form
for complex spaces. In the proof a Fredholm integral equation of the second kind
type is the key, and it is solved by a successive approximation and the convergence
is obtained by the method of majorants. It is rather surprising to see such a difficult
problem being solved by so elementary method.

The second method due to Grauert is the well-known “bumping method” com-
bined with L. Schwartz’s Fredholm Theorem 2), of which short but complete proof is
given (it is originally due to an idea of J.P. Demailly). For the purpose we introduce
the first cohomology H1(?,O).

With these preparations we finally prove Oka’s Pseudoconvexity Theorem that
pseudoconvex domains unramified over Cn are Stein.

At the end of each chapter some historical comments are put from the author’s
viewpoint and knowledges; it is expected to motivate the readers to confer other
mentioned resources, but they are far from the completeness.

The present book is an outcome of the author [40], largely rewritten with a num-
ber of additions. It is not aimed to give the full exposition of the fundamentals of
analytic function theory of several variables or complex analysis in several vari-
ables. But, the related topics are mentioned from place to place with references,
which readers are suggested to confer. And some of them are presented in Exer-
cises, which readers are hoped to solve by themselves. It is also recommended for
readers to take a look into those books and monographs referred in various places.

It is of more than happiness of the author if readers get interested in the present
subject through this book providing the elementary but self-contained proofs of the
Three Big Problems which form the basics of several complex variables, and if the
original works of Kiyoshi Oka, full of creative ideas, are enjoyed and recognized
deeper.

While the author was writing the present book, he gave several talks at the weekly
seminar on complex analysis and geometry, the University of Tokyo, Komaba,
Tokyo (so-called Monday Morning Seminar), having a number of discussions with
the members, which were very helpful and encouraging. In May 2017, he was kindly
invited by Professor Sachiko Hamano of Osaka City University to give an intensive

2) This term is due to A. Andreotti, according to a personal communication with A. Huckleberry
(cf. Jahresber. Dtsch. Math.Ver. 115 (2013), 21-45).
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one-week lectures based on the first draft of the book. In July of the same year, he
gave a seminary talk on Oka’s original method and related topics at Tor Vergata,
Rome by an invitation of Professor Filippo Bracci. In March 2019, he talked on the
book at Japan–Iceland Workshop, “Holomorphic Maps, Pluripotentials and Com-
plex Geometry” by the invitation of Professor Masanori Adachi (Shizuoka Univer-
sity), and in May of the year he gave a series of talks by the invitation of Professor
Steven Lu at Montreal; in July he gave a series of lectures based on this book at
Workshop, “Summer Program on Complex Geometry and Several Complex Vari-
ables” at Shanghai Center for Mathematical Sciences, Fudan University, Shanghai
by the invitation of Professor Min Ru (University of Houston). The author learned a
number of references on the pseudoconvexity problem from Professor Makoto Abe
(Hiroshima University), and had many useful and helpful discussions with Profes-
sors Y. Komori (Waseda Univerity, Tokyo) and J. Merker (Université Paris-Saclay).
Professor V. Vâjâitu (Université des Sciences et Technologies de Lille) kindly sug-
gested useful informations in Remarks at the end of Chap. 5. For all of them the
author would like to express his sincere gratitude.

The author acknowledges with many thanks the support of JSPS KAKENHI
Grant Number JP19K03511, which has been always helpful to carry out the present
project.

In Kamakura
Autumn, 2023

Junjiro Noguchi
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