$\operatorname{Mod} \ell$ Weil representations and Deligne-Lusztig inductions for unitary groups

Naoki Imai and Takahiro Tsushima

Abstract

We study the $\bmod \ell$ Weil representation of a finite unitary group and related Deligne-Lusztig inductions. In particular, we study their decomposition as representations of a symplectic group, and give a construction of a $\bmod \ell$ Howe correspondence for $\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2}^{-}\right)$including the case where $p=2$.

1 Introduction

Let q be a power of a prime number p. Weil representations of symplectic groups over \mathbb{F}_{q} are studied in [Sai72] and [How73] after [Wei64] if q is odd. Weil representations of general linear groups and unitary groups over \mathbb{F}_{q} are constructed in [Gér77] for any q. The Howe correspondence is constructed using the Weil representations.

In [IT23], we construct Weil representations of unitary groups by using cohomology of varieties over finite fields. More concretely, we consider the affine smooth variety X_{n} defined by $z^{q}+z=\sum_{i=1}^{n} x_{i}^{q+1}$ in $\mathbb{A}_{\mathbb{F}_{q^{2}}}^{n+1}$, where $n \geq 2$. Let $\mathbb{F}_{q,+}=\left\{x \in \mathbb{F}_{q^{2}} \mid x^{q}+x=0\right\}$. This variety admits an action of a finite unitary group $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ and a natural action of $\mathbb{F}_{q,+}$. Let $\ell \neq p$ be a prime number and $\psi \in \operatorname{Hom}\left(\mathbb{F}_{q,+}, \overline{\mathbb{Q}}_{\ell} \times\right) \backslash\{1\}$. Then the ψ-isotypic part $V_{n}=H_{\mathrm{c}}^{n}\left(X_{n, \overline{\mathbb{P}}_{q}}, \overline{\mathbb{Q}}_{\ell}\right)[\psi]$ realizes the Weil representation of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ with a natural action of $\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q^{2}}\right)$. We can use this Galois action to construct Shintani lifts for Weil representations as in [IT19]. Further V_{n} is isomorphic to middle cohomology of a μ_{q+1}-torsor over the complement of a Fermat hypersurface in a projective space as $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representations. Let S_{n} be the Fermat hypersurface defined by the homogenous polynomial $\sum_{i=1}^{n} x_{i}^{q+1}=0$ in $\mathbb{P}_{\mathbb{F}_{q^{2}}}^{n-1}$. Let $Y_{n}=\mathbb{P}_{\mathbb{F}_{q^{2}}}^{n-1} \backslash S_{n}$. Here let $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ act on $\mathbb{P}_{\mathbb{F}_{q^{2}}}^{n-1}$ by multiplication. Let \widetilde{Y}_{n} be the affine smooth variety defined by $\sum_{i=1}^{n} x_{i}^{q+1}=1$ in $\mathbb{A}_{\mathbb{F}_{q^{2}}}^{n}$. The natural morphism $f: \widetilde{Y}_{n} \rightarrow Y_{n} ;\left(x_{1}, \ldots, x_{n}\right) \mapsto\left[x_{1}: \cdots: x_{n}\right]$ is a μ_{q+1}-torsor. These varieties appear as Deligne-Lusztig varieties.

Let $\Lambda \in\left\{\overline{\mathbb{Q}}_{\ell}, \overline{\mathbb{F}}_{\ell}\right\}$. Let \mathscr{K}_{χ} denote the sheaf of Λ-modules on Y_{n} associated to a character $\chi^{-1}: \mu_{q+1} \rightarrow \Lambda^{\times}$and the μ_{q+1}-torsor f. We identify μ_{q+1} with the center of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$. For $\chi \in \operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{Q}}_{\ell}^{\times}\right)$, we have an isomorphism $V_{n}[\chi] \simeq H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi}\right)$ as $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representations (cf. (2.3)), which we can write using Deligne-Lusztig induction ([IT23, Proposition 6.1]). In this paper, we study a modular coefficients case of this cohomology. Namely, we analyze

$$
H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\xi}\right)
$$

2010 Mathematics Subject Classification. Primary: 20C33; Secondary: 11F27.
as $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representations over $\overline{\mathbb{F}}_{\ell}$ for $\xi \in \operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{F}}_{\ell}^{\times}\right)$. We show that these representations are irreducible in the most cases, but it can be an extension of the trivial representation by an irreducible representations when $\ell \mid q+1$. This is contrary to the $\overline{\mathbb{Q}}_{\ell}$-coefficients case, where they are all irreducible ($c f$. Proposition 2.1). See Proposition 3.6 for a more precise result.

In [IT23], we consider a rational form of $X_{2 n}$ over \mathbb{F}_{q}, which is denoted by $X_{2 n}^{\prime}$. Using the Frobenius action coming from the rationality of $X_{2 n}^{\prime}$ over \mathbb{F}_{q}, we can obtain a representation of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right) \times \mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$ on $H_{\mathrm{c}}^{2 n}\left(X_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{Q}}_{\ell}\right)[\psi](c f$. [IT23, §7.1.1]), for which we simply write $W_{n, \psi}$. We also consider a rational form of $Y_{2 n}$, which we denote by $Y_{2 n}^{\prime}$. For $\chi \in \operatorname{Hom}\left(\mu_{q+1}, \Lambda^{\times}\right)$, we can define a sheaf of Λ-modules \mathscr{K}_{χ} on $Y_{2 n}^{\prime}$ similarly, and then the cohomology $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)$ is regarded as an $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation. Similarly as above, we have an isomorphism $W_{n, \psi}[\chi] \simeq H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)$ as $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representations for $\chi \in \operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{Q}}_{\ell}^{\times}\right)$. If $\chi^{2}=1$, we can define the plus part $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)^{+}$and the minus part $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)^{-}$as $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representations using the Frobenius action. Any irreducible representation σ of $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$ over $\overline{\mathbb{Q}}_{\ell}$ is attached to

$$
[\xi] \in\left\{\xi \in \operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{F}}_{\ell}^{\times}\right) \mid \xi^{2} \neq 1\right\} /(\mathbb{Z} / 2 \mathbb{Z}) \quad \text { or } \quad(\xi, \kappa) \in \operatorname{Hom}\left(\mu_{q+1}, \mu_{2}\left(\overline{\mathbb{F}}_{\ell}\right)\right) \times\{ \pm\}
$$

as [IT23, $\S 7.2]$, where $1 \in \mathbb{Z} / 2 \mathbb{Z}$ acts on $\operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{F}}_{\ell}^{\times}\right)$by $\xi \mapsto \xi^{-1}$. Then $W_{n, \psi}[\sigma]$ is isomorphic to

$$
H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \mathbb{F}_{q}}^{\prime}, \mathscr{K}_{\chi}\right) \quad \text { or } \quad H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)^{\kappa}
$$

accordingly. This realizes the Howe correspondence for the dual pair $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right) \times \mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$.
The aim of this paper is to propose the modular coefficients version of this correspondence as a $\bmod \ell$ Howe correspondence for $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right) \times \mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)(c f . \S 6.2)$ and study the $\bmod \ell$ correspondence. Our main result is the following:

Theorem (Theorem 6.1). Assume that $\ell \neq 2$. The $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representations

$$
\begin{aligned}
& H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\xi}\right) \quad \text { for }[\xi] \in\left\{\xi \in \operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{F}}_{\ell}^{\times}\right) \mid \xi^{2} \neq 1\right\} /(\mathbb{Z} / 2 \mathbb{Z}), \\
& H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\xi}\right)^{\kappa} \quad \text { for } \xi \in \operatorname{Hom}\left(\mu_{q+1}, \mu_{2}\left(\overline{\mathbb{F}}_{\ell}\right)\right), \kappa \in\{ \pm\}
\end{aligned}
$$

are irreducible except the case where $\ell \mid q+1$ and $(\xi, \kappa)=(1,+)$, in which case $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\xi}\right)^{\kappa}$ is a non-trivial extension of the trivial representation by an irreducible representation. Furthermore, the above representations have no irreducible constituent in common.

In the following, we briefly introduce a content of each section. In §2.1, we recall several fundamental facts proved in [IT23]. In $\S 2.2$, we recall general facts on étale cohomology. In $\S 2.3$, we recall results on Lusztig series and ℓ-blocks.

In $\S 3$, we investigate the $\bmod \ell$ cohomology of Y_{n} as a $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representation. Our fundamental result is Proposition 3.3. To show this proposition, we need a transcendental result in [Dim92] (cf. the proof of Lemma 3.2). In §4, we prepare some geometric results on cohomology of $Y_{2 n}^{\prime}$. In $\S 5$, we study $\bmod \ell$ cohomology of $Y_{2 n}^{\prime}$ as an $\mathrm{Sp}_{n}\left(\mathbb{F}_{q}\right)$ representation for $\ell \neq 2$. In a modular representation theoretic view point, Brauer characters associated to V_{n} and $W_{n, \psi}$ have been studied in [GMST02], [GT04] and [HM01] etc. Using these results, we study the cohomology of Y_{n} and $Y_{2 n}^{\prime}$ as mentioned above.

In $\S 6$, we formulate a $\bmod \ell$ Howe correspondence for $\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2}^{-}\right)$using $\bmod \ell$ cohomology of $Y_{2 n}^{\prime}$, and state our result in terms of the $\bmod \ell$ Howe correspondence.

This work was supported by JSPS KAKENHI Grant Numbers 15K17506, 17K18722.

Notation

Let ℓ be a prime number. For a finite abelian group A, let A^{\vee} denote the character group $\operatorname{Hom}\left(A, \overline{\mathbb{Q}}_{\ell}^{\times}\right)$. For a finite group G and a finite-dimensional representation π and an irreducible representation ρ of G over $\overline{\mathbb{Q}}_{\ell}$, let $\pi[\rho]$ denote the ρ-isotypic part of π. For a trivial representation 1 of G, we often write π^{G} for $\pi[1]$.

Every scheme is equipped with the reduced scheme structure. For an integer $i \geq 0$, we write \mathbb{A}^{i} and \mathbb{P}^{i} for the i-dimensional affine space over $\overline{\mathbb{F}}_{q}$ and the i-dimensional projective space over $\overline{\mathbb{F}}_{q}$, respectively. We set $\mathbb{G}_{\mathrm{m}}=\mathbb{A}^{1} \backslash\{0\}$. For a scheme X over a field k and a field extension l / k, let X_{l} denote the base change of X to l.

2 Preliminaries

2.1 Weil representation of unitary group

In this subsection, we recall several facts proved in [IT23]. Let q be a power of a prime number p. For a positive integer m prime to p, we put

$$
\mu_{m}=\left\{a \in \overline{\mathbb{F}}_{q} \mid a^{m}=1\right\} .
$$

Let n be a positive integer. Let U_{n} be the unitary group over \mathbb{F}_{q} defined by the hermitian form

$$
\mathbb{F}_{q^{2}}^{n} \times \mathbb{F}_{q^{2}}^{n} \rightarrow \mathbb{F}_{q^{2}} ; \quad\left(\left(x_{i}\right),\left(x_{i}^{\prime}\right)\right) \mapsto \sum_{i=1}^{n} x_{i}^{q} x_{i}^{\prime} .
$$

We consider the Fermat hypersurface S_{n} defined by $\sum_{i=1}^{n} x_{i}^{q+1}=0$ in $\mathbb{P}_{\mathbb{F}_{q}}^{n-1}$. Let $Y_{n}=$ $\mathbb{P}_{\mathbb{F}_{q}}^{n-1} \backslash S_{n}$. Let $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ act on $\mathbb{P}_{\mathbb{F}_{q^{2}}}^{n-1}$ by left multiplication. Let \widetilde{Y}_{n} be the affine smooth variety defined by $\sum_{i=1}^{n} x_{i}^{q+1}=1$ in $\mathbb{A}_{\mathbb{F}_{q}}^{n}$. Similarly, $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ acts on $\widetilde{Y}_{n, \mathbb{F}_{q^{2}}}$. The morphism

$$
\begin{equation*}
\widetilde{Y}_{n} \rightarrow Y_{n} ;\left(x_{1}, \ldots, x_{n}\right) \mapsto\left[x_{1}: \cdots: x_{n}\right] \tag{2.1}
\end{equation*}
$$

is a μ_{q+1}-torsor and $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-equivariant.
Let $\ell \neq p$ be a prime number. Let $\omega_{\mathrm{U}_{n}}$ denote the Weil representation of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ over $\overline{\mathbb{Q}}_{\ell}$ (cf. [Gér77, Theorem 4.9.2]).

Let \mathcal{O} be the ring of integers in an algebraic extension of \mathbb{Q}_{ℓ}. Let \mathfrak{m} be the maximal ideal of \mathcal{O}. We set $\mathbb{F}=\mathcal{O} / \mathfrak{m}$.

Let $\Lambda \in\left\{\overline{\mathbb{Q}}_{\ell}, \mathcal{O}, \mathbb{F}\right\}$. For a separated and of finite type scheme Y over \mathbb{F}_{q} which admits a left action of a finite group G, let G act on $H_{\mathrm{c}}^{i}\left(Y_{\overline{\mathbb{F}}_{q}}, \Lambda\right)$ as $\left(g^{*}\right)^{-1}$ for $g \in G$. We put

$$
V_{n}=H_{\mathrm{c}}^{n-1}\left(\widetilde{Y}_{n, \overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}\right) .
$$

For $\chi \in \operatorname{Hom}\left(\mu_{q-1}, \Lambda^{\times}\right)$, let \mathscr{K}_{χ} denote the Λ-sheaf on $Y_{n, \mathbb{F}_{q^{2}}}$ defined by χ^{-1} and the covering (2.1). For $\chi \in \mu_{q-1}^{\vee}$, we have $V_{n}[\chi]=H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi}\right)$, which is the middle degree cohomology in a Deligne-Lusztig induction by [IT23, (5.1), §6.1].

Let X_{n} be the affine smooth variety over $\mathbb{F}_{q^{2}}$ defined by

$$
z^{q}+z=\sum_{i=1}^{n} x_{i}^{q+1}
$$

in $\mathbb{A}_{\mathbb{F}_{q^{2}}}^{n+1}=\operatorname{Spec} \mathbb{F}_{q^{2}}\left[x_{1}, \ldots, x_{n}, z\right]$. Let $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ act on X_{n} by

$$
X_{n} \rightarrow X_{n} ;(v, z) \mapsto(g v, z) \quad \text { for } g \in \mathrm{U}_{n}\left(\mathbb{F}_{q}\right)
$$

where we regard $v=\left(x_{i}\right)$ as a column vector. We put $\mathbb{F}_{q, \varepsilon}=\left\{a \in \mathbb{F}_{q^{2}} \mid a+\varepsilon a^{q}=0\right\}$. We sometimes abbreviate ± 1 as \pm. Let $\mathbb{F}_{q,+}$ act on X_{n} by $z \mapsto z+a$ for $a \in \mathbb{F}_{q,+}$.

Let $\psi \in \operatorname{Hom}\left(\mathbb{F}_{q, \varepsilon}, \Lambda^{\times}\right) \backslash\{1\}$. Let \mathscr{L}_{ψ} denote the Λ-sheaf associated to ψ^{-1} and $z^{q}+\varepsilon z=t$ on $\mathbb{A}_{\mathbb{F}_{q}}^{1}=\operatorname{Spec} \mathbb{F}_{q}[t]$. We consider the morphism

$$
\pi: \mathbb{A}_{\mathbb{F}_{q}}^{n} \rightarrow \mathbb{A}_{\mathbb{F}_{q}}^{1} ; \quad\left(x_{i}\right)_{1 \leq i \leq n} \mapsto \sum_{i=1}^{n} x_{i}^{q+1}
$$

Then we have an isomorphism

$$
\begin{equation*}
H_{\mathrm{c}}^{i}\left(X_{n, \overline{\mathbb{F}}_{q}}, \Lambda\right)[\psi] \simeq H_{\mathrm{c}}^{i}\left(\mathbb{A}^{n}, \pi^{*} \mathscr{L}_{\psi}\right) \tag{2.2}
\end{equation*}
$$

for $i \geq 0$.
Proposition 2.1. Assume that $n \geq 2$.
(1) We have $V_{n} \simeq \omega_{\mathrm{U}_{n}}$ as representations of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$.
(2) For $\chi \in \mu_{q+1}^{\vee}$, we have

$$
\operatorname{dim} V_{n}[\chi]= \begin{cases}\frac{q^{n}+(-1)^{n} q}{q+1} & \text { if } \chi=1 \\ \frac{q^{n}-(-1)^{n}}{q+1} & \text { if } \chi \neq 1\end{cases}
$$

The $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representations $\left\{V_{n}[\chi]\right\}_{\chi \in \mu_{q+1}^{\vee}}$ are irreducible and distinct. Moreover, only $V_{n}[1]$ is unipotent as a $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representation.

Proof. We have

$$
\begin{equation*}
V_{n} \simeq \bigoplus_{\chi \in \mu_{q+1}^{\nu}} H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi}\right) \simeq H_{\mathrm{c}}^{n}\left(\mathbb{A}^{n}, \pi^{*} \mathscr{L}_{\psi}\right) \tag{2.3}
\end{equation*}
$$

as representations of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ by [IT23, Lemma 4.3, Corollary 4.6, Lemma 4.7 (2)]. The claim (1) follows from (2.2), (2.3) and [IT23, (2.6), Theorem 2.5]. The claim (2) follows from the claim (1), (2.3) and [IT23, Lemma 4.2, Corollary 6.2].

2.2 General facts on étale cohomology

We recall a basic fact on cohomology of an affine smooth variety, which will be used frequently.

Lemma 2.2. Let X be an affine smooth variety over $\overline{\mathbb{F}}_{q}$ of dimension d. Let $\ell \neq p$. Let F be a finite extension of \mathbb{Q}_{ℓ}. Let \mathcal{O}_{F} be the ring of integers of F. Let κ_{F} be the residue field of \mathcal{O}_{F}. Let $\Lambda \in\left\{\mathcal{O}_{F}, \kappa_{F}\right\}$. Suppose that \mathscr{F} is a smooth Λ-sheaf on X.
(1) Assume $\Lambda=\kappa_{F}$. Then we have $H_{\mathrm{c}}^{i}(X, \mathscr{F})=0$ for $i<d$.
(2) Assume $\Lambda=\mathcal{O}_{F}$. The middle cohomology $H_{\mathrm{c}}^{d}(X, \mathscr{F})$ is a finitely generated free \mathcal{O}_{F}-module.

Proof. The first assertion follows from affine vanishing and Poincaré duality. We show the second claim. We take a uniformizer ϖ of \mathcal{O}_{F}. Then, we have an exact sequence

$$
H_{\mathrm{c}}^{d-1}(X, \mathscr{F} / \varpi) \rightarrow H_{\mathrm{c}}^{d}(X, \mathscr{F}) \xrightarrow{\varpi} H_{\mathrm{c}}^{d}(X, \mathscr{F}) .
$$

Since we have $H_{\mathrm{c}}^{d-1}(X, \mathscr{F} / \varpi)=0$ by the first claim, the ϖ-multiplication map is injective. Since $H_{\mathrm{c}}^{d}(X, \mathscr{F})$ is a finitely generated \mathcal{O}_{F}-module, the second claim follows.

We recall a well-known fact, which will be used in the proof of Proposition 4.4.
Lemma 2.3. Let the notation be as in Lemma 2.2. Let G be a finite group. Let $X \rightarrow Y$ be a G-torsor between d-dimensional affine smooth varieties over $\overline{\mathbb{F}}_{q}$.
(1) We have an isomorphism $H_{\mathrm{c}}^{d}\left(X, \kappa_{F}\right)^{G} \simeq H_{\mathrm{c}}^{d}\left(Y, \kappa_{F}\right)$.
(2) Assume $\ell \dagger|G|$. Then we have an isomorphism $H_{\mathrm{c}}^{i}\left(X, \kappa_{F}\right)^{G} \simeq H_{\mathrm{c}}^{i}\left(Y, \kappa_{F}\right)$ for any i.

Proof. As in [Ill81, Lemma 2.2], we have a spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(G, H_{\mathrm{c}}^{q}\left(X, \kappa_{F}\right)\right) \Longrightarrow E^{p+q}=H_{\mathrm{c}}^{p+q}\left(Y, \kappa_{F}\right)
$$

Since we have $H_{\mathrm{c}}^{i}\left(X, \kappa_{F}\right)=0$ for $i<d$ by Lemma 2.2 (1), we have an isomorphism $E_{2}^{0, d} \simeq E^{d}$. Hence the first claim follows.

We show the second claim. For any $\kappa_{F}[G]$-module M, we have $H^{i}(G, M)=0$ for any $i>0$ by $\ell \nmid|G|$. Hence the second claim follows from the above spectral sequence.

2.3 Lusztig series and ℓ-blocks

We briefly recall several facts on Lusztig series ($c f$. [Lus77, §7]). We mainly follow [DM91, Chapter 13].

Let G be a connected reductive group over \mathbb{F}_{q}. Let $\operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$ denote the set of irreducible characters of $G\left(\mathbb{F}_{q}\right)$ over $\overline{\mathbb{Q}}_{\ell}$. Let G^{*} be a connected reductive group over \mathbb{F}_{q} which is the dual of G in the sense of [DM91, 13.10 Definition].

We fix an isomorphism $\overline{\mathbb{F}}_{q}^{\times} \simeq(\mathbb{Q} / \mathbb{Z})_{p^{\prime}}$ and an embedding $\overline{\mathbb{F}}_{q}^{\times} \hookrightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$, where $(\mathbb{Q} / \mathbb{Z})_{p^{\prime}}$ denotes the subgroup of \mathbb{Q} / \mathbb{Z} consisting of the elements of order prime to p. Let (s) be a geometric conjugacy class of a semisimple element $s \in G^{*}\left(\mathbb{F}_{q}\right)$. As in [DM91, 13.16 Definition], let $\mathcal{E}(G,(s))$ be the subset of $\operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$ which consists of irreducible constitutes of a Deligne-Lusztig character $R_{T}^{G}(\theta)$, where (T, θ) is of the geometric conjugacy class associated to (s) in the sense of [DM91, 13.2 Definition, 13.12 Proposition]. The subset $\mathcal{E}(G,(s))$ is called a Lusztig series associated to (s). By [DM91, 13.17 Proposition], $\operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$ is partitioned into Lusztig series. The following fact is well-known.

Lemma 2.4. Let $f: G \rightarrow G^{\prime}$ be a morphism between connected reductive groups over \mathbb{F}_{q} with a central connected kernel such that the image of f contains the derived group of G^{\prime}. Let G^{*} and $G^{* *}$ be the dual groups of G and G^{\prime}. Let $s \in G^{*}\left(\mathbb{F}_{q}\right)$ be the image of a semisimple element s^{\prime} in $G^{* *}\left(\mathbb{F}_{q}\right)$. Then the irreducible constituents of the inflations under f of elements in $\mathcal{E}\left(G^{\prime},\left(s^{\prime}\right)\right)$ are in $\mathcal{E}(G,(s))$.

Proof. This follows from [DM91, 13.22 Proposition].
For a semisimple ℓ^{\prime}-element $s \in G^{*}\left(\mathbb{F}_{q}\right)$, we define

$$
\mathcal{E}_{\ell}(G,(s))=\bigcup_{t \in\left(C_{G^{*}(\mathbb{F} q)}(s)\right)_{\ell}} \mathcal{E}(G,(s t)) .
$$

It is known that this set is a union of ℓ-blocks by [BM89, 2.2 Théorème]. Any block contained in $\mathcal{E}_{\ell}(G,(1))$ is called a unipotent ℓ-block.

Lemma 2.5. Let s and s^{\prime} be semisimple ℓ^{\prime}-elements of $G^{*}\left(\mathbb{F}_{q}\right)$. Assume that s and s^{\prime} are not geometrically conjugate. Let $\rho \in \mathcal{E}(G,(s))$ and $\rho^{\prime} \in \mathcal{E}\left(G,\left(s^{\prime}\right)\right)$. Then $\rho \notin \mathcal{E}_{\ell}\left(G,\left(s^{\prime}\right)\right)$. In particular, ρ and ρ^{\prime} are in different ℓ-blocks.

Proof. Assume $\rho \in \mathcal{E}_{\ell}\left(G,\left(s^{\prime}\right)\right)$. Then there exists an element $s^{\prime \prime} \in C_{G^{*}\left(\mathbb{F}_{q}\right)}\left(s^{\prime}\right)$ of ℓ-power such that $\rho \in \mathcal{E}\left(G,\left(s^{\prime} s^{\prime \prime}\right)\right)$. Since $\rho \in \mathcal{E}(G,(s))$, the elements s and $s^{\prime} s^{\prime \prime}$ are geometrically conjugate by [DM91, 13.17 Proposition]. Let ℓ^{b} be the order of $s^{\prime \prime}$. By $s^{\prime \prime} \in C_{G^{*}\left(\mathbb{F}_{q}\right)}\left(s^{\prime}\right)$, the elements $s^{\ell^{b}}$ and $s^{\ell^{b}}$ are geometrically conjugate. Then s and s^{\prime} are geometrically conjugate, since s and s^{\prime} are ℓ^{\prime}-elements. This is a contradiction.

For an irreducible representation π of a finite group, let $\bar{\pi}$ denote the Brauer character associated to a $\bmod \ell$ reduction of π. For any integer $m \geq 1$, let m_{p} be the largest power of p dividing m and $m_{p^{\prime}}=m / m_{p}$.

Lemma 2.6. Let ρ be an irreducible ordinary character of G^{F}. Assume $\rho \in \mathcal{E}_{\ell}(G,(s))$ for some semisimple ℓ^{\prime}-element s of $G^{*}\left(\mathbb{F}_{q}\right)$. If

$$
\frac{\left|G\left(\mathbb{F}_{q}\right)\right|_{p^{\prime}}}{\left|C_{G^{*}\left(\mathbb{F}_{q}\right)}(s)\right|_{p^{\prime}}}=\rho(1)
$$

then $\bar{\rho}$ is an irreducible Brauer character.
Proof. Assume that $\bar{\rho}$ is not irreducible and take an irreducible Brauer subcharacter χ of $\bar{\rho}$. Then

$$
\frac{\left|G\left(\mathbb{F}_{q}\right)\right|_{p^{\prime}}}{\left|C_{G^{*}\left(\mathbb{F}_{q}\right)}(s)\right|_{p^{\prime}}} \leq \chi(1)<\rho(1)
$$

by [HM01, Proposition 1]. This is a contradiction.
We recall some results in [HM01, §6]. Take a nonisotropic vector c in the standard representation of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$. Let \hat{S} be the subgroup of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ fixing the line $\langle c\rangle$ and inducing the identity on the orthogonal complement of $\langle c\rangle$. Let S be the image of \hat{S} in $\mathrm{PU}_{n}\left(\mathbb{F}_{q}\right)$. Then \hat{S} and S are cyclic groups of order $q+1$. We follow [HM01, $\S 6]$ for a definition of the Weil characters of $\mathrm{SU}_{n}\left(\mathbb{F}_{q}\right)$.

Lemma 2.7. Assume that $n \geq 3$. The Weil characters of $\mathrm{SU}_{n}\left(\mathbb{F}_{q}\right)$ consist of one unipotent character $\chi_{(n-1,1)} \in \mathcal{E}\left(\operatorname{SU}_{n},(1)\right)$ of degree $\left(q^{n}+(-1)^{n} q\right) /(q+1)$ and q nonunipotent characters $\chi_{s,(n-1)} \in \mathcal{E}\left(\mathrm{SU}_{n},(s)\right)$ of degree $\left(q^{n}-(-1)^{n}\right) /(q+1)$ for $s \in S \backslash\{1\}$, where the elements of S give different geometrically conjugacy classes. We put

$$
N=\min \left\{\frac{q^{n}+(-1)^{n} q}{q+1}, \frac{q^{n}-(-1)^{n}}{q+1}\right\}
$$

Let V be a Weil character of $\mathrm{SU}_{n}\left(\mathbb{F}_{q}\right)$. If the degree of V is N, then \bar{V} is irreducible. If the degree of V is $N+1$, then \bar{V} is irreducible or has two irreducible constituents, one of which is trivial. Further we have the following:
(1) Let $n \geq 4$ be even. Then $\bar{\chi}_{(n-1,1)}$ is irreducible if and only if $\ell \nmid q+1$.
(2) Let $n \geq 3$ be odd. Then $\bar{\chi}_{s,(n-1)}$ is irreducible if and only if the order of s is not a power of ℓ.

Proof. Everything is explained in [HM01, p. 755] except that the elements of S give different geometrically conjugacy classes. Assume that different elements s and s^{\prime} in S are geometrically conjugate. Then their lifts \hat{s} and \hat{s}^{\prime} in \hat{S} are geometrically conjugate modulo the center. Considering the eigenvalues of \hat{s} and \hat{s}^{\prime}, we have a contradiction.

Lemma 2.8. Let $\chi \in \mu_{q+1}^{\vee} \backslash\{1\}$. We view χ as a character of the diagonal torus $\mathrm{U}_{1}\left(\mathbb{F}_{q}\right)^{n}$ of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ under the first projection. Let $\hat{s} \in \hat{S}$ be the element corresponding to χ by [DM91, 13.12 Proposition]. Let $s \in S$ be the image of \hat{s}. Then we have $\left.V_{n}[1]\right|_{\mathrm{SU}_{n}\left(\mathbb{F}_{q}\right)}=$ $\chi_{(n-1,1)}$ and $\left.V_{n}[\chi]\right|_{\operatorname{SU}_{n}\left(\mathbb{F}_{q}\right)}=\chi_{s,(n-1)}$.

Proof. This follows from Lemma 2.4 and Lemma 2.7.

3 Cohomology as representation of unitary group

In this section, we investigate mainly $H_{c}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \overline{\mathbb{F}}_{\ell}\right)$ as an $\overline{\mathbb{F}}_{\ell}\left[\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)\right]$-module.
In this section, we often ignore Tate twists when it is not necessary to consider Frobenius action. For an \mathcal{O}-module M, let $M[\mathfrak{m}]$ denote the \mathcal{O}-submodule of M consisting of elements annihilated by any element of \mathfrak{m}.

Lemma 3.1. (1) The cohomology $H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)$ is free as an \mathcal{O}-module for any i.
(2) The cohomology $H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)$ is zero if $i \neq n-2$ and i is odd, and is free of rank one as an \mathcal{O}-module if $0 \leq i \leq 2(n-2)$ is even and $i \neq n-2$.
(3) We have an isomorphism $H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \otimes_{\mathcal{O}} \mathbb{F} \simeq H^{i}\left(S_{n, \overline{\mathbb{F}}}, \underline{\mathbb{F}}\right)$ for any i.

Proof. We denote by $S_{n, \mathbb{Q}}$ the Fermat variety defined by the same equation as S_{n} in $\mathbb{P}_{\mathbb{Q}}^{n-1}$. Let i be an integer. We have isomorphisms

$$
H^{i}\left(S_{n, \mathbb{C}}^{\mathrm{an}}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathcal{O} \simeq H^{i}\left(S_{n, \mathbb{C}}^{\mathrm{an}}, \mathcal{O}\right) \simeq H^{i}\left(S_{n, \mathbb{C}}, \mathcal{O}\right)
$$

where the first isomorphism follows from that \mathcal{O} is flat over \mathbb{Z}, and the second one follows from the comparison theorem between singular and étale cohomology. By taking
an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_{p}$, we have an isomorphism $H^{i}\left(S_{n, \mathbb{C}}, \mathcal{O}\right) \simeq H^{i}\left(S_{n, \overline{\mathbb{Q}}_{p}}, \mathcal{O}\right)$. Since $S_{n, \mathbb{Q}}$ has good reduction at p and the reduction equals S_{n}, we have an isomorphism

$$
H^{i}\left(S_{n, \overline{\mathbb{Q}}_{p}}, \mathcal{O}\right) \simeq H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)
$$

by the proper base change theorem. As a result, we have

$$
\begin{equation*}
H^{i}\left(S_{n, \mathbb{C}}^{\mathrm{an}}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathcal{O} \simeq H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \tag{3.1}
\end{equation*}
$$

Hence the first claim follows, because $H^{i}\left(S_{n, \mathbb{C}}^{\mathrm{an}}, \mathbb{Z}\right)$ is a free \mathbb{Z}-module by [Dim92, Proposition (B32) (ii)]. The second claim follows from (3.1) and [Dim92, Theorem (B22)]. We have a short exact sequence

$$
0 \rightarrow H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \otimes_{\mathcal{O}} \mathbb{F} \rightarrow H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathbb{F}\right) \rightarrow H^{i+1}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)[\mathfrak{m}] \rightarrow 0
$$

Hence the third claim follows from the first one.
In the sequel, we always assume that \mathcal{O} is the ring of integers in a finite extension of $\mathbb{Q}_{\ell}\left(\mu_{p(q+1)}\right)$. Every homomorphism is $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-equivariant. Let the notation be as in §4.1. We have a long exact sequence

$$
\begin{align*}
\cdots & \rightarrow H_{\mathrm{c}}^{i}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \rightarrow H^{i}\left(\mathbb{P}^{n-1}, \mathcal{O}\right) \rightarrow H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \tag{3.2}\\
& \rightarrow H_{\mathrm{c}}^{i+1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \rightarrow H^{i+1}\left(\mathbb{P}^{n-1}, \mathcal{O}\right) \rightarrow H^{i+1}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \rightarrow \cdots
\end{align*}
$$

By Lemma 2.2 (1), the restriction map

$$
H^{i}\left(\mathbb{P}^{n-1}, \mathcal{O}\right) \rightarrow H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)
$$

is an isomorphism for $i<n-2$. By Lemma 3.1 (1) and Poincaré duality, we obtain an isomorphism

$$
f_{i}: H^{i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \xrightarrow{\sim} H^{i+2}\left(\mathbb{P}^{n-1}, \mathcal{O}\right)
$$

for $n-1 \leq i \leq 2 n-4$. Let $\kappa=\left[\mathbb{P}^{n-2}\right] \in H^{2}\left(\mathbb{P}^{n-1}, \mathcal{O}\right)$ be the cycle class of the hyperplane $\mathbb{P}^{n-2} \subset \mathbb{P}^{n-1}$, and $\kappa^{i} \in H^{2 i}\left(\mathbb{P}^{n-1}, \mathcal{O}\right)$ the cup product of κ. For $1 \leq i \leq n-1$, the map $\kappa^{i}: \mathcal{O} \rightarrow H^{2 i}\left(\mathbb{P}^{n-1}, \mathcal{O}\right) ; 1 \mapsto \kappa^{i}$ is an isomorphism. Let $\left[S_{n, \overline{\mathbb{F}}}\right] \in H^{2}\left(\mathbb{P}^{n-1}, \mathcal{O}\right)$ be the cycle class of $S_{n, \overline{\mathbb{P}}_{q}} \subset \mathbb{P}^{n-1}$. For $n-1 \leq 2 i \leq 2 n-4$, the composite

$$
H^{2 i}\left(\mathbb{P}^{n-1}, \mathcal{O}\right) \xrightarrow{\text { rest. }} H^{2 i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \xrightarrow[\simeq]{f_{2 i}} H^{2 i+2}\left(\mathbb{P}^{n-1}, \mathcal{O}\right)
$$

equals the map induced by the cup product by $\left[S_{n, \overline{\mathbb{F}}_{q}}\right.$. Clearly, we have $\left[S_{n, \overline{\mathbb{F}}_{q}}\right]=(q+1) \kappa$ in $H^{2}\left(\mathbb{P}^{n-1}, \mathcal{O}\right)$. We write $q+1=\ell^{a} r$ with $(\ell, r)=1$. By Lemma 3.1 (2), we have

$$
H_{\mathrm{c}}^{i}\left(Y_{n, \overline{\mathbb{F}}}, \mathcal{O}\right) \simeq \begin{cases}0 & \text { if } i \text { is even } \tag{3.3}\\ \mathcal{O} / \ell^{a} & \text { if } i \text { is odd }\end{cases}
$$

for $n \leq i<2 n-2$.
For a character $\chi: \mu_{q+1} \rightarrow \mathcal{O}^{\times}$, we write $\bar{\chi}$ for the composite of χ and the reduction map $\mathcal{O}^{\times} \rightarrow \mathbb{F}^{\times}$.

We have a short exact sequence

$$
\begin{equation*}
0 \rightarrow H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi}\right) \otimes_{\mathcal{O}} \mathbb{F} \rightarrow H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\bar{\chi}}\right) \rightarrow H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi}\right)[\mathfrak{m}] \rightarrow 0 . \tag{3.4}
\end{equation*}
$$

By (3.3), we have

$$
\operatorname{dim}_{\mathbb{F}} H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)[\mathfrak{m}]= \begin{cases}0 & \text { if } a=0 \tag{3.5}\\ \frac{1-(-1)^{n}}{2} & \text { if } a \geq 1\end{cases}
$$

By Proposition 2.1, Lemma 2.2 (2), (3.4) with $\chi=1$ and (3.5), we have

$$
\operatorname{dim}_{\mathbb{F}} H_{\mathrm{c}}^{n-1}\left(Y_{n, \mathbb{F}_{q}}, \mathbb{F}\right)= \begin{cases}\frac{q^{n}+(-1)^{n} q}{q+1} & \text { if } a=0 \tag{3.6}\\ \frac{q^{n}-(-1)^{n}}{q+1}+\frac{1+(-1)^{n}}{2} & \text { if } a \geq 1\end{cases}
$$

Hence, we have

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}} H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi}\right)[\mathfrak{m}]=\frac{1+(-1)^{n}}{2} \quad \text { if } \chi \neq 1 \text { and } \bar{\chi}=1 \tag{3.7}
\end{equation*}
$$

again by Proposition 2.1, Lemma 2.2 (2) and (3.4) with χ. Note that a character $\chi \neq 1$ such that $\bar{\chi}=1$ does not exist if $a=0$.

In the following, we investigate (3.4) when $\bar{\chi} \neq 1$. We set $Y_{n, r}=\widetilde{Y}_{n, \overline{\mathbb{F}}_{q}} / \mu_{\ell \cdot}$. We have a decomposition $\mu_{q+1}=\mu_{\ell^{a}} \times \mu_{r}$. We write as $\chi=\chi_{\ell^{a}} \chi_{r}$ with $\chi_{\ell^{a}} \in \operatorname{Hom}\left(\mu_{\ell^{a}}, \mathcal{O}^{\times}\right)$and $\chi_{r} \in \operatorname{Hom}\left(\mu_{r}, \mathcal{O}^{\times}\right)$. We have

$$
\begin{equation*}
0 \rightarrow H_{\mathrm{c}}^{n-1}\left(Y_{n, r}, \mathscr{K}_{\chi_{\ell} a}\right) \otimes_{\mathcal{O}} \mathbb{F} \rightarrow H_{\mathrm{c}}^{n-1}\left(Y_{n, r}, \mathbb{F}\right) \rightarrow H_{\mathrm{c}}^{n}\left(Y_{n, r}, \mathscr{K}_{\chi_{\ell}}\right)[\mathfrak{m}] \rightarrow 0 . \tag{3.8}
\end{equation*}
$$

The natural morphism $Y_{n, r} \rightarrow Y_{n, \overline{\mathbb{F}}_{q}}$ is a μ_{r}-torsor. By $(\ell, r)=1$, we have isomorphisms

$$
\begin{align*}
& H_{\mathrm{c}}^{i}\left(Y_{n, r}, \mathscr{K}_{\chi^{a}}\right) \simeq \bigoplus_{\chi} \in \operatorname{Hom}\left(\mu_{r}, \mathcal{O}^{\times}\right) \\
& H_{\mathrm{c}}^{i}\left(Y_{n, r}, \mathbb{F}\right) \simeq H_{\bar{\chi}_{r} \in \operatorname{Hom}\left(\mu_{r}, \mathbb{F}^{\times}\right)}^{i}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi^{a} \chi_{r}}\right), \tag{3.9}\\
& H_{\mathrm{c}}^{i}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\bar{\chi}_{r}}\right)
\end{align*}
$$

for any integer i. By Proposition 2.1, Lemma 2.2 (2) and the first isomorphism in (3.9), we have

$$
\operatorname{rank}_{\mathcal{O}} H_{\mathrm{c}}^{n-1}\left(Y_{n, r}, \mathscr{K}_{\ell^{a}}\right)= \begin{cases}\frac{q^{n}-(-1)^{n}}{q+1} r & \text { if } \chi_{\ell^{a}} \neq 1, \tag{3.10}\\ \frac{q^{n}-(-1)^{n}}{q+1} r+(-1)^{n} & \text { if } \chi_{\ell^{a}}=1 .\end{cases}
$$

We show the following lemma by using a comparison theorem between singular and étale cohomology and applying results on weighted hypersurfaces in [Dim92].

Lemma 3.2. The pull-back $H_{\mathrm{c}}^{i}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \rightarrow H_{\mathrm{c}}^{i}\left(Y_{n, r}, \mathcal{O}\right)$ is an isomorphism for $n \leq i<$ $2 n-2$.

Proof. Let $f: Y_{n, r} \rightarrow Y_{n, \overline{\mathbb{F}}_{q}}$ be the natural finite morphism. We have the trace map $f_{*}: H_{\mathrm{c}}^{i}\left(Y_{n, r}, \mathcal{O}\right) \rightarrow H_{\mathrm{c}}^{i}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)$. The pull-back map $f^{*}: H_{\mathrm{c}}^{i}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right) \rightarrow H_{\mathrm{c}}^{i}\left(Y_{n, r}, \mathcal{O}\right)$ is injective by $(\ell, r)=1$, because the composite $f_{*} \circ f^{*}$ is the r-multiplication map. Therefore it suffices to show that the map is surjective.

We regard S_{n} as a closed subscheme of S_{n+1} defined by $x_{n+1}=0$. We take $\xi \in \mathbb{F}_{q^{2}}$ such that $\xi^{q+1}=-1$. Then \widetilde{Y}_{n} is isomorphic to the complement $S_{n+1} \backslash S_{n}$ over $\mathbb{F}_{q^{2}}$ by

$$
\widetilde{Y}_{n, \mathbb{F}_{q^{2}}} \xrightarrow{\sim}\left(S_{n+1} \backslash S_{n}\right)_{\mathbb{F}_{q^{2}}} ;\left(x_{i}\right)_{1 \leq i \leq n} \mapsto\left[x_{1}: \cdots: x_{n}: \xi\right] .
$$

Let μ_{q+1} act on $S_{n+1, \mathbb{F}_{q^{2}}}$ by $\left[x_{1}: \cdots: x_{n+1}\right] \mapsto\left[x_{1}: \cdots: x_{n}: \zeta^{-1} x_{n+1}\right]$ for $\zeta \in \mu_{q+1}$. We have the well-defined morphism $\pi: S_{n+1} \rightarrow \mathbb{P}_{\mathbb{F}_{q^{2}}}^{n-1} ;\left[x_{1}: \cdots: x_{n+1}\right] \mapsto\left[x_{1}: \cdots: x_{n}\right]$. We have a commutative diagram

By considering the base change of this to $\overline{\mathbb{F}}_{q}$ and taking the quotients on the upper line by $\mu_{\ell^{a}}$, we obtain a commutative diagram

Let $\mathbf{w}=\left(1, \ldots, 1, \ell^{a}\right) \in \mathbb{Z}_{\geq 1}^{n+1}$ and $\mathbb{P}(\mathbf{w})$ be the weighted projective space associated to \mathbf{w} over $\overline{\mathbb{F}}_{q}$. Then the quotient $S_{n+1, \overline{\mathbb{F}}_{q}} / \mu_{\ell^{a}}$ is isomorphic to the weighted hypersurface defined by

$$
\begin{equation*}
\sum_{i=1}^{n} X_{i}^{q+1}+X_{n+1}^{r}=0 \tag{3.12}
\end{equation*}
$$

in $\mathbb{P}(\mathbf{w}) \simeq \mathbb{P}^{n} / \mu_{\ell^{a}}$. Let $U_{i} \subset S_{n+1, \overline{\mathbb{F}}_{q}}$ be the open subscheme defined by $x_{i} \neq 0$ for $1 \leq i \leq n$. Then we have $S_{n+1, \overline{\mathbb{F}}_{q}}=\bigcup_{i=1}^{n} U_{i}$. For each $1 \leq i \leq n$, the quotient $U_{i} / \mu_{\ell^{a}}$ is defined by

$$
1+s_{1}^{q+1}+\cdots+s_{i-1}^{q+1}+s_{i+1}^{q+1}+\cdots+s_{n}^{q+1}+t_{i}^{r}=0
$$

in \mathbb{A}^{n}. This is smooth over $\overline{\mathbb{F}}_{q}$ by $p \nmid q+1$ and the Jacobian criterion. Hence $S_{n+1, \overline{\mathbb{F}}_{q}} / \mu_{\ell^{a}}$ is smooth over $\overline{\mathbb{F}}_{q}$.

We consider the smooth hypersurface defined by the same equation as (3.12) in the weighted projective space $\mathbb{P}(\mathbf{w})$ over \mathbb{Q}, which we denote by S^{\prime}. Then $S_{\mathbb{C}}^{\text {an }}$ is strongly smooth as in [Dim92, Example (B31)]. Hence the integral cohomology algebra of it is torsion-free by [Dim92, Proposition (B32) (ii)]. Clearly, S^{\prime} has good reduction at p, and the reduction is isomorphic to $S_{n+1, \overline{\mathbb{F}}_{q}} / \mu_{\ell^{a}}$ over $\overline{\mathbb{F}}_{q}$. In the same manner as (3.1), we have an isomorphism

$$
H^{i}\left(S_{\mathbb{C}}^{\prime \text { an }}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathcal{O} \simeq H^{i}\left(S_{n+1, \overline{\mathbb{F}}_{q}} / \mu_{\ell^{a}}, \mathcal{O}\right)
$$

Hence, $H^{i}\left(S_{n+1, \overline{\mathbb{F}}_{q}} / \mu_{\ell^{a}}, \mathcal{O}\right)$ is a free \mathcal{O}-module of rank one for any even integer $i \neq n-1$ and $H^{i}\left(S_{n+1, \overline{\mathbb{F}_{q}}} / \mu_{\ell^{a}}, \mathcal{O}\right)=0$ for any odd integer $i \neq n-1$ by [Dim92, (B33)]. By (3.11), we have a commutative diagram

for $n-1 \leq 2 i<2 n-3$, where the horizontal lines are exact. Hence the right vertical map is surjective. Hence the claim for any odd integer i follows.

By (3.3), it suffices to show $H_{\mathrm{c}}^{2 i}\left(Y_{n, r}, \mathcal{O}\right)=0$ for $n \leq 2 i<2 n-2$. We have an exact sequence

$$
0 \rightarrow H_{\mathrm{c}}^{2 i}\left(Y_{n, r}, \mathcal{O}\right) \xrightarrow{g_{i}} H^{2 i}\left(S_{n+1, \overline{\mathbb{F}}_{q}} / \mu_{\ell^{a}}, \mathcal{O}\right) \rightarrow H^{2 i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)
$$

for $n \leq 2 i<2 n-2$ by Lemma 3.1 (2). If $H_{\mathrm{c}}^{2 i}\left(Y_{n, r}, \mathcal{O}\right) \neq 0$, the cokernel of g_{i} is torsion, because $H^{2 i}\left(S_{n+1, \overline{\mathbb{F}}_{q}} / \mu_{\ell^{a}}, \mathcal{O}\right)$ is a free \mathcal{O}-module of rank one. Since $H^{2 i}\left(S_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)$ is a free \mathcal{O}-module by Lemma 3.1 (1), we obtain $H_{\mathrm{c}}^{2 i}\left(Y_{n, r}, \mathcal{O}\right)=0$.

We show a fundamental proposition through the paper.
Proposition 3.3. (1) Assume $\ell \nmid q+1$. Let $\chi \in \operatorname{Hom}\left(\mu_{q+1}, \mathcal{O}^{\times}\right)$. We have an isomorphism

$$
H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi}\right) \otimes_{\mathcal{O}} \mathbb{F} \xrightarrow{\sim} H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\bar{\chi}}\right)
$$

as $\mathbb{F}\left[\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)\right]$-modules.
(2) Assume $\ell \mid q+1$. We have a short exact sequence

$$
0 \rightarrow H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi_{\ell^{a} \chi_{r}}}\right) \otimes_{\mathcal{O}} \mathbb{F} \rightarrow H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\bar{\chi}_{r}}\right) \rightarrow H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi_{\ell^{a} \chi_{r}}}\right)[\mathfrak{m}] \rightarrow 0
$$

as $\mathbb{F}\left[\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)\right]$-modules. Furthermore, we have

$$
\operatorname{dim}_{\mathbb{F}} H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\left.\chi_{\ell^{a} \chi_{r}}\right)}\right)[\mathfrak{m}]= \begin{cases}0 & \text { if } \chi_{r} \neq 1, \\ \frac{1+(-1)^{n}}{2} & \text { if } \chi_{r}=1 \text { and } \chi_{\ell^{a}} \neq 1, \\ \frac{1-(-1)^{n}}{2} & \text { if } \chi_{r}=1 \text { and } \chi_{\ell^{a}}=1 .\end{cases}
$$

Proof. By (3.3) and Lemma 3.2, we have

$$
H_{\mathrm{c}}^{i}\left(Y_{n, r}, \mathcal{O}\right) \simeq H_{\mathrm{c}}^{i}\left(Y_{n, \overline{\mathbb{F}}}, \mathcal{O}\right) \simeq \begin{cases}0 & \text { if } i \text { is even }, \tag{3.13}\\ \mathcal{O} / \ell^{a} & \text { if } i \text { is odd }\end{cases}
$$

for $n \leq i<2 n-2$. Hence, by (3.8) with $\chi_{\ell^{a}}=1$ and (3.10), we have

$$
\operatorname{dim}_{\mathbb{F}} H_{\mathrm{c}}^{n-1}\left(Y_{n, r}, \mathbb{F}\right)= \begin{cases}\frac{q^{n}-(-1)^{n}}{q+1} r+(-1)^{n} & \text { if } a=0 \\ \frac{q^{-}-(-1)^{n}}{q+1} r+\frac{1+(-1)^{n}}{2} & \text { if } a \geq 1\end{cases}
$$

Hence we have

$$
\operatorname{dim}_{\mathbb{F}} H_{\mathrm{c}}^{n}\left(Y_{n, r}, \mathscr{K}_{\chi^{a}}\right)[\mathfrak{m}]= \begin{cases}0 & \text { if } a=0 \\ \frac{1+(-1)^{n}}{2} & \text { if } a \geq 1 \text { and } \chi_{\ell^{a}} \neq 1 \\ \frac{1-(-1)^{n}}{2} & \text { if } a \geq 1 \text { and } \chi_{\ell^{a}}=1\end{cases}
$$

by (3.8) and (3.10). According to (3.5) and (3.7), we have the same formula for $\operatorname{dim}_{\mathbb{F}} H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi_{\ell^{a}}}\right)[\mathfrak{m}]$. Hence we have

$$
\begin{equation*}
H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{P}}_{q}}, \mathscr{K}_{\chi_{e^{a} \chi_{r}}}\right)[\mathfrak{m}]=0 \quad \text { if } \chi_{r} \neq 1 \tag{3.14}
\end{equation*}
$$

by (3.9). Hence the latter claim in the claim (2) is proved. The former one is (3.4). By (3.4) and (3.14), we have an isomorphism

$$
\begin{equation*}
H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi_{\ell} \chi_{r}}\right) \otimes_{\mathcal{O}} \mathbb{F} \simeq H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\bar{\chi}_{r}}\right) \quad \text { if } \chi_{r} \neq 1 \tag{3.15}
\end{equation*}
$$

The claim (1) for $\chi=1$ follows from (3.4) with $\chi=1$ and (3.5), and the one for $\chi \neq 1$ follows from (3.15).

Lemma 3.4. Assume $\ell \mid q+1$.
(1) Assume that n is odd. Then $H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathcal{O}\right)[\mathfrak{m}]$ is a trivial representation of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$.
(2) Assume that $n \geq 4$ is even and $\ell \neq 2$. Let $\chi_{\ell^{a}} \in \operatorname{Hom}\left(\mu_{q+1}, \mathcal{O}^{\times}\right)$be a non-trivial character of ℓ-power order. Then $H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi_{e^{a}}}\right)[\mathfrak{m}]$ is a trivial representation of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$.

Proof. Assume that n is odd. Since $H_{\mathrm{c}}^{n-1}\left(S_{n, \overline{\mathbb{F}}}, \mathcal{O}\right)$ is a trivial $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representation by [HM78, Theorem 1], $H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}}, \mathcal{O}\right)$ is so by (3.2). Hence, the first assertion follows.

We show the second claim. By Proposition 3.3 (2), we have isomorphisms

$$
\begin{align*}
& H_{\mathrm{c}}^{n-1}\left(Y_{n, \mathbb{\mathbb { F }}_{q}}, \mathcal{O}\right) \otimes_{\mathcal{O}} \mathbb{F} \simeq H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathbb{F}\right) \tag{3.16}\\
& H_{\mathrm{c}}^{n-1}\left(Y_{n, \mathbb{\mathbb { F }}_{q}}, \mathcal{O}\right) \otimes_{\mathcal{O}} \overline{\mathbb{Q}}_{\ell} \simeq H_{\mathrm{c}}^{n-1}\left(Y_{n, \mathbb{\mathbb { F }}_{q}}, \overline{\mathbb{Q}}_{\ell}\right)
\end{align*}
$$

and a short exact sequence

$$
0 \rightarrow H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{r}}_{q}}, \mathscr{K}_{\chi_{\not} a}\right) \otimes_{\mathcal{O}} \mathbb{F} \rightarrow H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{\mathrm{q}}}, \mathbb{F}\right) \rightarrow H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi \ell^{a}}\right)[\mathfrak{m}] \rightarrow 0
$$

By these and Lemma 2.7, $H_{\mathrm{c}}^{n}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\chi_{\ell}}\right)[\mathfrak{m}]$ is a trivial $\mathbb{F}\left[\mathrm{SU}_{n}\left(\mathbb{F}_{q}\right)\right]$-module. Hence, $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ on it factoring through det by $n \geq 4$ and [Gér77, (1), (8) in the proof of Theorem 3.3]. In the sequel, we need the assumption $\ell \neq 2$, because we apply [FS82]. Let $\chi \in \mu_{r}^{\vee} \backslash\{1\}$. Then there exists a semisimple ℓ^{\prime}-element s_{χ} in the center of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ such that the character $\chi \circ$ det of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ belongs to the ℓ-block corresponding to $s_{\chi}^{\mathrm{U}_{u}\left(\mathbb{F}_{q}\right)}$ in the notation in [FS82, the first paragraph of $\S 6]$. Then s_{χ} is non-trivial by [FS82, p. 116, Theorem (6A)] using the fact that the 1-dimensional unipotent representation of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$ is trivial. Recall that $H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}\right)$ is a unipotent $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representation by Proposition 2.1. Hence it belongs to the block corresponding to $1^{\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)}$. The blocks corresponding to $s_{\chi}^{\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)}$ and $1^{\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)}$ are distinct by [FS82, Theorem (5D)]. Hence, $\bar{\chi} \circ$ det can not appear as a quotient of $H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}}, ~ \mathbb{F}\right)$ by (3.16). Therefore, the claim follows.
Corollary 3.5. We have $\overline{V_{n}[\chi]}=H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\bar{\chi}}\right)$ for any $\chi \in \mu_{q+1}^{\vee}$ if $\ell \nmid q+1$, and

$$
\begin{aligned}
& \overline{V_{n}\left[\chi_{\ell^{a}}\right]}+\frac{1+(-1)^{n}}{2}=\overline{V_{n}[1]}+\frac{1-(-1)^{n}}{2}=H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \overline{\mathbb{F}}_{\ell}\right) \text { for any } \chi_{\ell^{a}} \in \mu_{\ell^{a}}^{\vee} \backslash\{1\}, \\
& \overline{V_{n}\left[\chi_{\ell^{a}} \chi_{r}\right]}=\overline{V_{n}\left[\chi_{r}\right]}=H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\overline{\chi_{r}}}\right) \quad \text { for any } \chi_{\ell^{a}} \in \mu_{\ell^{a}}^{\vee} \text { and } \chi_{r} \in \mu_{r}^{\vee} \backslash\{1\}
\end{aligned}
$$

if $\ell \mid q+1$ as Brauer characters of $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$.
Proof. The claims follow from Proposition 3.3 and Lemma 3.4.
We deduce the following proposition by combining the above theory with Corollary 3.5 .

Proposition 3.6. We assume that $n \geq 3$.
(1) Assume $\ell \nmid q+1$. The $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representations

$$
H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\xi}\right) \quad \text { for } \xi \in \operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{F}}_{\ell}^{\times}\right)
$$

are irreducible. Moreover, these are distinct.
(2) Assume $\ell \mid q+1$. Moreover, we suppose $\ell \neq 2$ if n is even. The middle cohomology $H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}}^{q}, \overline{\mathbb{F}}_{\ell}\right)$ has two irreducible constitutes one of which is a trivial character. The $\mathrm{U}_{n}\left(\mathbb{F}_{q}\right)$-representations

$$
H_{\mathrm{c}}^{n-1}\left(Y_{n, \overline{\mathbb{F}}_{q}}, \mathscr{K}_{\xi}\right) \quad \text { for } \xi \in \operatorname{Hom}\left(\mu_{r}, \overline{\mathbb{F}}_{\ell}^{\times}\right) \backslash\{1\}
$$

are irreducible and distinct.
Proof. Let S be as in $\S 2.3$. Let $S^{\prime} \subset S$ denote the subgroup of order r. We have

$$
\left\{\left.V_{n}\left[\chi_{r}\right]\right|_{\mathrm{SU}_{n}\left(\mathbb{F}_{q}\right)} \mid \chi_{r} \in \mu_{r}^{\vee} \backslash\{1\}\right\}=\left\{\chi_{s,(n-1)} \mid s \in S^{\prime} \backslash\{1\}\right\}
$$

by Lemma 2.8. Hence all the claims other than distinction follow from Proposition 2.1, Lemma 2.7 and Corollary 3.5.

It remains to show that $\bar{\chi}_{(n-1,1)}$ and $\bar{\chi}_{s,(n-1)}$ for $s \in S^{\prime} \backslash\{1\}$ are all different. This follows from Lemma 2.5 and Lemma 2.7.

4 Cohomology as representation of symplectic group

4.1 Geometric setting

Let n be a positive integer. The variety $S_{2 n}$ is isomorphic to the projective variety $S_{2 n}^{\prime}$ defined by $\sum_{i=1}^{n}\left(x_{i}^{q} y_{i}-x_{i} y_{i}^{q}\right)=0$ in $\mathbb{P}_{\mathbb{F}_{q}}^{2 n-1}$. We set $Y_{2 n}^{\prime}=\mathbb{P}_{\mathbb{F}_{q}}^{2 n-1} \backslash S_{2 n}^{\prime}$. Then we have $Y_{2 n} \simeq Y_{2 n, \mathbb{F}_{q^{2}}}^{\prime}$. Let

$$
J=\left(\begin{array}{cc}
\mathbf{0}_{n} & E_{n} \\
-E_{n} & \mathbf{0}_{n}
\end{array}\right) \in \mathrm{GL}_{2 n}\left(\mathbb{F}_{q}\right) .
$$

Let $\mathrm{Sp}_{2 n}$ be the symplectic group over \mathbb{F}_{q} defined by the symplectic form

$$
\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q} ; \quad\left(v, v^{\prime}\right) \mapsto{ }^{t} v J v^{\prime}
$$

Let $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$ act on $\mathbb{P}_{\mathbb{F}_{q}}^{2 n-1}$ by left multiplication. This action stabilizes $Y_{2 n}^{\prime}$. Let $\widetilde{Y}_{2 n}^{\prime}$ be the affine smooth variety defined by $\sum_{i=1}^{n}\left(x_{i}^{q} y_{i}-x_{i} y_{i}^{q}\right)=1$ in $\mathbb{A}_{\mathbb{F}_{q}}^{2 n}$. This affine variety admits a similar action of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$. Similarly to (2.1), we have the $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-equivariant μ_{q+1}-covering

$$
\begin{equation*}
\widetilde{Y}_{2 n}^{\prime} \rightarrow Y_{2 n}^{\prime} ;\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto\left[x_{1}: \cdots: x_{n}: y_{1}: \cdots: y_{n}\right] . \tag{4.1}
\end{equation*}
$$

Let $\operatorname{Fr}_{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ be the geometric Frobenius automorphism defined by $x \mapsto x^{q^{-1}}$ for $x \in \overline{\mathbb{F}}_{q}$. For a separated and of finite type scheme Z over \mathbb{F}_{q}, let Fr_{q} denote the pullback of Fr_{q} on $H_{\mathrm{c}}^{i}\left(Z_{\overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}\right)$.

Let $X_{2 n}^{\prime}$ be the affine smooth variety defined by

$$
z^{q}-z=\sum_{i=1}^{n}\left(x_{i} y_{i}^{q}-x_{i}^{q} y_{i}\right)
$$

in $\mathbb{A}_{\mathbb{F}_{q}}^{2 n+1}=\operatorname{Spec} \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right]$. We write $v=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. Let $\mathrm{U}_{2 n}^{\prime}$ be the unitary group over \mathbb{F}_{q} defined by the skew-hermitian form

$$
\mathbb{F}_{q^{2}}^{n} \times \mathbb{F}_{q^{2}}^{n} \rightarrow \mathbb{F}_{q^{2}} ; \quad\left(v, v^{\prime}\right) \mapsto{ }^{t} \bar{v} J v^{\prime}
$$

The group $\mathrm{U}_{2 n}^{\prime}\left(\mathbb{F}_{q}\right)$ acts on $X_{2 n, \mathbb{F}_{q^{2}}}^{\prime}$ by $(v, z) \mapsto(g v, z)$ for $g \in \mathrm{U}_{2 n}^{\prime}\left(\mathbb{F}_{q}\right)$. Let \mathbb{F}_{q} act on $X_{2 n}^{\prime}$ by $z \mapsto z+\eta$ for $\eta \in \mathbb{F}_{q}$.

We put

$$
W_{n, \psi}=H_{\mathrm{c}}^{2 n}\left(X_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{Q}}_{\ell}(n)\right)[\psi] .
$$

We identify μ_{q+1} with the center of $\mathrm{U}_{2 n}^{\prime}\left(\mathbb{F}_{q}\right)$. By [IT23, Lemma 3.4], the geometric Frobenius Fr_{q} stabilizes $W_{n, \psi}[\chi]$ for $\chi \in \mu_{q+1}^{\vee}$ such that $\chi^{2}=1$ and acts on it as an involution. Let $\kappa \in\{ \pm\}$. For such χ, let $W_{n, \psi}[\chi]^{\kappa}$ denote the κ-eigenspace of Fr_{q}.

Let ν be the quadratic character of μ_{q+1} if $p \neq 2$.
Lemma 4.1 ([IT23, Lemma 7.1]). Let $n \geq 1$. We have

$$
\operatorname{dim} W_{n, \psi}[1]^{\kappa}=\frac{\left(q^{n}+\kappa\right)\left(q^{n}+\kappa q\right)}{2(q+1)}, \quad \operatorname{dim} W_{n, \psi}[\chi]=\frac{q^{2 n}-1}{q+1}
$$

for $\kappa \in\{ \pm\}$ and $\chi \in \mu_{q+1}^{\vee} \backslash\{1\}$. Further,

$$
\operatorname{dim} W_{n, \psi}[\nu]^{\kappa}=\frac{q^{2 n}-1}{2(q+1)}
$$

for $\kappa \in\{ \pm\}$ if $p \neq 2$.
Let $\Lambda \in\left\{\overline{\mathbb{Q}}_{\ell}, \mathbb{F}\right\}$ and $\psi \in \operatorname{Hom}\left(\mathbb{F}_{q}, \Lambda^{\times}\right) \backslash\{1\}$. Let

$$
\pi^{\prime}: \mathbb{A}_{\mathbb{F}_{q}}^{2 n} \rightarrow \mathbb{A}_{\mathbb{F}_{q}}^{1} ;\left(\left(x_{i}\right)_{1 \leq i \leq n},\left(y_{i}\right)_{1 \leq i \leq n}\right) \mapsto \sum_{i=1}^{n}\left(x_{i} y_{i}^{q}-x_{i}^{q} y_{i}\right)
$$

Then we have a natural isomorphism

$$
\begin{equation*}
H_{\mathrm{c}}^{2 n}\left(X_{2 n, \mathbb{\mathbb { F }}_{q}}^{\prime}, \Lambda\right)[\psi] \simeq H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{\prime *} \mathscr{L}_{\psi}\right) \tag{4.2}
\end{equation*}
$$

Let $\mathbf{0} \in \mathbb{A}_{\mathbb{F}_{q}}^{2 n}$ be the zero section. Let $U^{\prime}=\pi^{\prime-1}\left(\mathbb{G}_{\mathrm{m}, \mathbb{F}_{q}}\right), Z^{\prime}=\pi^{\prime-1}(0)$ and $Z^{\prime 0}=Z^{\prime} \backslash\{\mathbf{0}\}$. In the following, for a μ_{q+1}-representations M over Λ, let $M[1]$ denote the μ_{q+1}-fixed part of M.

Lemma 4.2. Assume that $q+1$ is invertible in Λ and $n \geq 2$. Then we have

$$
H_{\mathrm{c}}^{2 n}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \Lambda\right)=0, \quad H_{\mathrm{c}}^{2 n+1}\left(U_{\overline{\mathbb{F}}_{q}}^{\prime}, \pi^{\prime *} \mathscr{L}_{\psi}\right)[1]=0
$$

Proof. The first claim follows from (3.3) using the isomorphism $Y_{2 n, \overline{\mathbb{F}}_{q}} \simeq Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}$ and the assumption that $q+1$ is invertible in Λ. The second claim follows from the first one and [IT23, Lemma 4.3, Remark 7.11].

Lemma 4.3. Assume that $q+1$ is invertible in Λ. We have an isomorphism

$$
H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{\prime *} \mathscr{L}_{\psi}\right)[1] \simeq H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \Lambda(-1)\right)
$$

as representations of $\mathrm{U}_{2 n}^{\prime}\left(\mathbb{F}_{q}\right)$ and $\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$.

Proof. Since $\left.\pi^{* *} \mathscr{L}_{\psi}\right|_{Z^{\prime}}=\Lambda$, we have an exact sequence

$$
H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{\prime *} \mathscr{L}_{\psi}\right)[1] \longrightarrow H_{\mathrm{c}}^{2 n}\left(Z_{\overline{\mathbb{F}}_{q}}^{\prime}, \Lambda\right)[1] \rightarrow 0
$$

by Lemma 4.2 and the assumption that $q+1$ is invertible in Λ. By $n \geq 1$ and [IT23, Lemma 4.4 (3), Remark 7.11], we have

$$
H_{\mathrm{c}}^{2 n}\left(Z_{\overline{\mathbb{F}}_{q}}^{\prime}, \Lambda\right)[1] \simeq H_{\mathrm{c}}^{2 n}\left(Z_{\mathbb{\mathbb { F }}_{q}}^{\prime 0}, \Lambda\right)[1]=H_{\mathrm{c}}^{2 n}\left(Z_{\overline{\mathbb{F}}_{q}}^{\prime 0}, \Lambda\right) .
$$

We have a morphism

$$
H_{\mathrm{c}}^{2 n}\left(Z_{\mathbb{F}_{q}}^{\prime 0}, \Lambda\right) \longrightarrow H^{2 n-2}\left(S_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \Lambda(-1)\right)
$$

by [IT23, Lemma 4.4, Remark 7.11], whose cokernel is a sum of trivial representations. Further we have a surjective morphism

$$
H^{2 n-2}\left(S_{2 n, \overline{\mathbb{F}}}^{\prime}, \Lambda(-1)\right) \longrightarrow H^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \Lambda(-1)\right)
$$

by the long exact sequence for $Y_{2 n}^{\prime}=\mathbb{P}_{\mathbb{F}_{q}}^{2 n-1} \backslash S_{2 n}^{\prime}$. Consider the composition of the above morphisms

$$
\begin{equation*}
H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{* *} \mathscr{L}_{\psi}\right)[1] \longrightarrow H^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \Lambda(-1)\right) . \tag{4.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
\operatorname{dim} H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{\prime *} \mathscr{L}_{\psi}\right)[1]=\operatorname{dim} H^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}_{q}}}^{\prime}, \Lambda(-1)\right)=\frac{q^{2 n}+q}{q+1} \tag{4.4}
\end{equation*}
$$

by [IT23, (2.6), Proposition 2.6, Lemma 4.2], Proposition 2.1 (2), (3.4) and (3.5). The $\mathrm{U}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $H^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \Lambda(-1)\right)$ is irreducible of dimension greater than 1 by Proposition 3.6 (1) and (4.4). Hence (4.3) is surjective, since the cokernel of (4.3) is a sum of trivial representations. Therefore (4.3) is an isomorphism by (4.4).

4.2 Invariant part

In this subsection, we study some invariant parts of $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}}^{\prime}, \mathbb{F}\right)$.
Let U be the unipotent radical of the Borel subgroup of SL_{2} consisting of upper triangular matrices. Recall that we have the isomorphisms

$$
\begin{align*}
& \mathbb{A}_{\mathbb{F}_{q}}^{2} / U\left(\mathbb{F}_{q}\right) \xrightarrow{\sim} \mathbb{A}_{\mathbb{F}_{q}}^{2} ;(x, y) \mapsto\left(x^{q}-x y^{q-1}, y\right), \\
& \mathbb{A}_{\mathbb{F}_{q}}^{2} / \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right) \xrightarrow{\sim} \mathbb{A}_{\mathbb{F}_{q}}^{2} ;(x, y) \mapsto\left(x^{q} y-x y^{q}, \frac{x^{q^{2}} y-x y^{q^{2}}}{x^{q} y-x y^{q}}\right) \tag{4.5}
\end{align*}
$$

($c f$. [Bon11, Exercise 2.2 (b), (e)]).
We regard a product group $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)^{n}$ as a subgroup of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$ by the injective homomorphism

$$
\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)^{n} \hookrightarrow \operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right) ;\left(\left(\begin{array}{cc}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right)\right)_{1 \leq i \leq n} \mapsto\left(\begin{array}{cc}
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) & \operatorname{diag}\left(b_{1}, \ldots, b_{n}\right) \\
\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right) & \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)
\end{array}\right) .
$$

We understand the quotients $\widetilde{Y}_{2 n}^{\prime} / U\left(\mathbb{F}_{q}\right)^{n}$ and $\widetilde{Y}_{2 n}^{\prime} / \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)^{n}$, respectively. By (4.5), we have the isomorphisms

$$
\begin{align*}
& \widetilde{Y}_{2 n}^{\prime} / U\left(\mathbb{F}_{q}\right)^{n} \xrightarrow{\sim}\left\{\left(\left(s_{i}\right)_{1 \leq i \leq n},\left(t_{i}\right)_{1 \leq i \leq n}\right) \in \mathbb{A}_{\mathbb{F}_{q^{2}}}^{2 n} \mid \sum_{i=1}^{n} s_{i} t_{i}=1\right\} \\
& \left(\left(x_{i}\right)_{1 \leq i \leq n},\left(y_{i}\right)_{1 \leq i \leq n}\right) \mapsto\left(\left(x_{i}^{q}-x_{i} y_{i}^{q-1}\right)_{1 \leq i \leq n},\left(y_{i}\right)_{1 \leq i \leq n}\right), \\
& \widetilde{Y}_{2 n}^{\prime} / \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)^{n} \xrightarrow{\sim}\left\{\left(\left(s_{i}\right)_{1 \leq i \leq n},\left(t_{i}\right)_{1 \leq i \leq n}\right) \in \mathbb{A}_{\mathbb{F}_{q^{2}}}^{2 n} \mid \sum_{i=1}^{n} s_{i}=1\right\} \simeq \mathbb{A}_{\mathbb{F}_{q^{2}}}^{2 n-1}
\end{align*},\left\{\begin{array}{l}
\left(\left(x_{i}\right)_{1 \leq i \leq n},\left(y_{i}\right)_{1 \leq i \leq n}\right) \mapsto\left(\left(x_{i}^{q} y_{i}-x_{i} y_{i}^{q}\right)_{1 \leq i \leq n},\left(\frac{x_{i}^{q^{2}} y_{i}-x_{i} y_{i}^{q^{2}}}{x_{i}^{q} y_{i}-x_{i} y_{i}^{q}}\right)_{1 \leq i \leq n}\right) . \tag{4.6}
\end{array}\right.
$$

The actions of $U\left(\mathbb{F}_{q}\right)^{n}$ and $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)^{n}$ on $\widetilde{Y}_{2 n}^{\prime}$ are not free if $n \geq 2$.
The following proposition plays a key role to show Proposition 5.8 and corresponding results in the case where $p \neq 2$.

Proposition 4.4. (1) We have

$$
H_{\mathrm{c}}^{2 n-1}\left(\widetilde{Y}_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right)^{\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)^{n}}=0, \quad H_{\mathrm{c}}^{2 n-1}\left(\widetilde{Y}_{2 n, \overline{\mathbb{F}}}^{\prime}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)^{n}} \simeq \mathbb{F} .
$$

(2) We have

$$
H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right)^{\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)}=0, \quad H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)^{n}} \simeq \mathbb{F} .
$$

Proof. We show the claim (1) by induction on n. The action of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ on $\widetilde{Y}_{2}^{\prime}$ is free by [Bon11, Proposition 2.1.2]. Hence, the claim for $n=1$ follows from Lemma 2.3 (1), (4.6) and $H_{\mathrm{c}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \mathbb{F}\right) \simeq \mathbb{F}$.

Assume $n \geq 2$. We consider the closed subscheme $R_{2 n}$ of $\widetilde{Y}_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}$ defined by $y_{n}=0$. This is isomorphic to $\mathbb{A}^{1} \times \tilde{Y}_{2 n-2, \overline{\mathbb{F}}_{q}}^{\prime}$. Let $Q_{2 n}=\tilde{Y}_{2 n, \overline{\mathbb{F}}_{q}}^{\prime} \backslash R_{2 n}$. Similarly to (4.6), the quotient $Q_{2 n} / U\left(\mathbb{F}_{q}\right)$ is isomorphic to $\mathbb{A}^{2 n-2} \times \mathbb{G}_{\mathrm{m}}$. Therefore, $H_{\mathrm{c}}^{i}\left(Q_{2 n}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)}$ is zero for $i=2 n-1,2 n$ by $n \geq 2$. Hence, we have isomorphisms

$$
H_{\mathrm{c}}^{2 n-1}\left(\widetilde{Y}_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)} \xrightarrow{\sim} H_{\mathrm{c}}^{2 n-1}\left(R_{2 n}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)} \simeq H_{\mathrm{c}}^{2 n-3}\left(\widetilde{Y}_{2 n-2, \overline{\mathbb{F}_{q}},}^{\prime}, \mathbb{F}\right),
$$

which are compatible with the actions of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)^{n-1}$. Hence, the claim follows from the induction hypothesis.

We show the claim (2). By applying Lemma 2.3 (1) to the μ_{q+1}-torsor (4.1), we have

$$
\begin{equation*}
H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right) \simeq H_{\mathrm{c}}^{2 n-1}\left(\tilde{Y}_{2 n, \overline{\mathbb{F}_{q}}}^{\prime}, \mathbb{F}\right)^{\mu_{q+1}} \quad \text { for any } n \geq 1 \tag{4.7}
\end{equation*}
$$

We have $H_{\mathrm{c}}^{2 n-1}\left(\widetilde{Y}_{2 n, \mathbb{\mathbb { F }}_{q}}^{\prime}, \mathbb{F}^{\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)}=0\right.$. By (4.7), we have the inclusion $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right) \subset$ $H_{\mathrm{c}}^{2 n-1}\left(\widetilde{Y}_{2 n, \mathbb{\mathbb { F }}_{q}}^{\prime}, \mathbb{F}\right)$. Hence, we have $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \mathbb{F}_{q}}^{\prime}, \mathbb{F}\right)^{\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)}=0$.

The action of μ_{q+1} on $\widetilde{Y}_{2 n}^{\prime}$ commutes with the one of $U\left(\mathbb{F}_{q}\right)^{n}$. By the above proof, we have an isomorphism

$$
H_{\mathrm{c}}^{2 n-1}\left(\tilde{Y}_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)^{n}} \simeq H_{\mathrm{c}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \mathbb{F}\right)
$$

as $\mathbb{F}\left[\mu_{q+1}\right]$-modules, where μ_{q+1} acts on \mathbb{G}_{m} by the usual multiplication. Hence μ_{q+1} acts on $H_{\mathrm{c}}^{2 n-1}\left(\widetilde{Y}_{2 n, \overline{\mathbb{F}}}^{\prime}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)^{n}}$ trivially. Therefore, we have

$$
H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)^{n}} \simeq H_{\mathrm{c}}^{2 n-1}\left(\widetilde{Y}_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathbb{F}\right)^{U\left(\mathbb{F}_{q}\right)^{n} \times \mu_{q+1}} \simeq \mathbb{F}
$$

by (4.7).

4.3 Trace computations

In this subsection, we assume $p \neq 2$. An aim in this subsection is to show Proposition 4.9, which implies that the Brauer characters associated to $W_{n, \psi}[\nu]^{+}$and $W_{n, \psi}[\nu]^{-}$are distinct in the case where $\ell \neq 2$ (cf. Proposition 5.5).

Let $\left(\frac{a}{\mathbb{F}_{q}}\right)=a^{\frac{q-1}{2}}$ for $a \in \mathbb{F}_{q}^{\times}$. For $\psi \in \operatorname{Hom}\left(\mathbb{F}_{q}, \Lambda^{\times}\right) \backslash\{1\}$, we consider the quadratic Gauss sum

$$
G(\psi)=\sum_{x \in \mathbb{F}_{q}^{\times}}\left(\frac{x}{\mathbb{F}_{q}}\right) \psi(x) \in \Lambda .
$$

As a well-known fact, we have $G(\psi)^{2}=\left(\frac{-1}{\mathbb{F}_{q}}\right) q$. In particular, we have $G(\psi) \neq 0$.
Let X be the affine smooth surface defined by $z^{q}-z=x y^{q}-x^{q} y$ in $\mathbb{A}_{\mathbb{F}_{q}}^{3}$. We consider the projective smooth surface \bar{X} defined by

$$
Z_{2}^{q} Z_{3}-Z_{2} Z_{3}^{q}=Z_{0} Z_{1}^{q}-Z_{0}^{q} Z_{1}
$$

in $\mathbb{P}_{\mathbb{F}_{q}}^{3}=\operatorname{Proj} \mathbb{F}_{q}\left[Z_{0}, Z_{1}, Z_{2}, Z_{3}\right]$. We regard X as an open subscheme of \bar{X} by $(x, y, z) \mapsto$ $[x: y: z: 1]$. Let $D=\bar{X} \backslash X$. Let

$$
u=\left(\begin{array}{ll}
1 & 1 \tag{4.8}\\
0 & 1
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)
$$

which is of order p. Let F denote the Frobenius endomorphism of X over \mathbb{F}_{q}. Let $\eta \in \mathbb{F}_{q}$ and $\zeta \in \mu_{q+1}$. Let $f_{\eta, \zeta}$ denote the endomorphism $F \eta \zeta u$ of $X_{\overline{\mathbb{F}}_{q}}$. This endomorphism extends to the one of $\bar{X}_{\overline{\mathbb{F}}_{q}}$ given by

$$
f_{\eta, \zeta}: \bar{X}_{\overline{\mathbb{F}}_{q}} \rightarrow \bar{X}_{\overline{\mathbb{F}}_{q}} ;\left[Z_{0}: Z_{1}: Z_{2}: Z_{3}\right] \mapsto\left[\left(Z_{0}+Z_{1}\right)^{q}: Z_{1}^{q}: \zeta\left(Z_{2}+\eta Z_{3}\right)^{q}: \zeta Z_{3}^{q}\right] .
$$

This endomorphism $f_{\eta, \zeta}$ stabilizes $D_{\overline{\mathbb{F}}_{q}}$.
Lemma 4.5. We have

$$
\operatorname{Tr}\left(f_{\eta, \zeta} ; H^{*}\left(\bar{X}_{\overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}\right)\right)= \begin{cases}q^{2}+q+1 & \text { if } \eta=0, \\ 2 q^{2}+q+1 & \text { if } \eta \neq 0 \text { and } \nu(\zeta)\left(\frac{-\eta}{\overline{\mathbb{F}}_{q}}\right)=1, \\ q+1 & \text { if } \eta \neq 0 \text { and } \nu(\zeta)\left(\frac{-\eta}{\mathbb{F}_{q}}\right)=-1 .\end{cases}
$$

Proof. By the Grothendieck-Lefschetz trace formula, it suffices to count the number of the fixed points of $f_{\eta, \zeta}$ on $\bar{X}_{\overline{\mathbb{F}}_{q}}$ with multiplicity. The set of the fixed points of $f_{\eta, \zeta}$ equals the union of the two sets

$$
\begin{aligned}
& \Sigma_{1}=\left\{[x: y: z: 1] \in \mathbb{P}^{3} \mid x^{q}-\zeta x=-\zeta y, y^{q}=\zeta y, y^{q+1}=-\eta, z^{q}-z=-\eta\right\}, \\
& \Sigma_{2}=\left\{[0: z: 1: 0] \in \mathbb{P}^{3} \mid z^{q}=\zeta z\right\} \cup\{[0: 1: 0: 0]\} .
\end{aligned}
$$

Assume that $\eta \neq 0$ and $\nu(\zeta)\left(\frac{-\eta}{\mathbb{F}_{q}}\right)=1$. We have

$$
\Sigma_{1}=\left\{[x: y: z: 1] \in \mathbb{P}^{3} \mid x^{q}-\zeta x=-\zeta y, y^{2}=-\eta / \zeta, z^{q}-z=-\eta\right\}
$$

and $\left|\Sigma_{1}\right|=2 q^{2}$. One can check that the multiplicity of $f_{\eta, \zeta}$ at any point of $\Sigma_{1} \cup \Sigma_{2}$ equals one. Hence the claim in this case follows. Assume that $\eta \neq 0$ and $\nu(\zeta)\left(\frac{-\eta}{\mathbb{F}_{q}}\right)=-1$. Then we have $\left|\Sigma_{1}\right|=0$. The claim is shown in the same way as above. The other case is computed similarly.

We simply write f_{ζ} for $f_{0, \zeta}$. Let $\psi \in \mathbb{F}_{q}^{\vee} \backslash\{1\}$. we simply write \mathscr{L}_{ψ}^{0} for the pullback of \mathscr{L}_{ψ} under $\mathbb{A}^{2} \rightarrow \mathbb{A}^{1} ;(x, y) \mapsto x y^{q}-x^{q} y$.

Corollary 4.6. We have

$$
\frac{1}{q+1} \sum_{\zeta \in \mu_{q+1}} \nu(\zeta) \operatorname{Tr}\left(f_{\zeta} ; H_{\mathrm{c}}^{2}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right)=G(\psi)
$$

Proof. For any i, we have isomorphisms

$$
H_{\mathrm{c}}^{i}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right) \simeq H_{\mathrm{c}}^{i}\left(X_{\mathbb{F}_{q}}, \overline{\mathbb{Q}}_{\ell}(1)\right)[\psi] \xrightarrow{\sim} H_{\mathrm{c}}^{i}\left(\bar{X}_{\overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}(1)\right)[\psi],
$$

where the second isomorphism follows, since the group \mathbb{F}_{q} acts on D trivially. By the Künneth formula and [IT23, Lemma 3.3], we have

$$
\begin{aligned}
\sum_{\zeta \in \mu_{q+1}} \nu(\zeta) \operatorname{Tr}\left(f_{\zeta} ; H_{\mathrm{c}}^{2}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right) & =\sum_{\zeta \in \mu_{q+1}} \nu(\zeta) \operatorname{Tr}\left(f_{\zeta} ; H_{\mathrm{c}}^{*}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right) \\
& =\sum_{\zeta \in \mu_{q+1}} \nu(\zeta) \operatorname{Tr}\left(f_{\zeta} ; H^{*}\left(\bar{X}_{\overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}(1)\right)[\psi]\right) \\
& =\frac{1}{q} \sum_{\zeta \in \mu_{q+1}} \nu(\zeta) \sum_{\eta \in \mathbb{F}_{q}} \psi^{-1}(\eta) \operatorname{Tr}\left(f_{\eta, \zeta} ; H^{*}\left(\bar{X}_{\overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}(1)\right)\right) .
\end{aligned}
$$

The last term equals

$$
\begin{aligned}
& \frac{1}{q^{2}} \sum_{\zeta \in \mu_{q+1}^{2}}\left(\left(2 q^{2}+q+1\right) \sum_{\eta \in\left(\mathbb{F}_{q}^{\times}\right)^{2}} \psi(\eta)+(q+1) \sum_{\eta \notin\left(\mathbb{F}_{q}^{\times}\right)^{2}} \psi(\eta)\right) \\
& -\frac{1}{q^{2}} \sum_{\zeta \notin \mu_{\frac{q+1}{2}}}\left(\left(2 q^{2}+q+1\right) \sum_{\eta \notin\left(\mathbb{F}_{q}^{\times}\right)^{2}} \psi(\eta)+(q+1) \sum_{\eta \in\left(\mathbb{F}_{q}^{\times}\right)^{2}} \psi(\eta)\right)=(q+1) G(\psi)
\end{aligned}
$$

by Lemma 4.5 and $\sum_{\zeta \in \mu_{q+1}} \nu(\zeta)=0$.
Lemma 4.7. We have

$$
\operatorname{Tr}\left(F \eta \zeta ; H^{*}\left(\bar{X}_{\overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}\right)\right)= \begin{cases}(q+1)\left(q^{2}+1\right) & \text { if } \eta=0, \\ q^{2}+q+1 & \text { if } \eta \neq 0 .\end{cases}
$$

Proof. The set of the fixed points of $F \eta \zeta$ on $\bar{X}_{\overline{\mathbb{F}}_{q}}$ is the union of the three finite sets

$$
\begin{aligned}
& \Sigma_{1}=\left\{[x: y: z: 1] \in \mathbb{P}^{3} \mid z^{q}-z=x y^{q}-x^{q} y=-\eta, x^{q}=\zeta x, y^{q}=\zeta y\right\}, \\
& \Sigma_{2}=\left\{[x: y: 1: 0] \in \mathbb{P}^{3} \mid x^{q}=\zeta x, y^{q}=\zeta y\right\}, \\
& \Sigma_{3}=\left\{\left[Z_{0}: Z_{1}: 0: 0\right] \in \mathbb{P}^{3} \mid\left[Z_{0}: Z_{1}\right] \in \mathbb{P}_{\mathbb{F}_{q}}^{1}\left(\mathbb{F}_{q}\right)\right\} .
\end{aligned}
$$

We have $\Sigma_{1}=\emptyset$ if $\eta \neq 0$ and $\left|\Sigma_{1}\right|=q^{3}$ if $\eta=0$. The multiplicity of $F \eta \zeta$ at any point of $\bigcup_{i=1}^{3} \Sigma_{i}$ equals one. Hence the claim follows.

Corollary 4.8. Let $\psi \in \mathbb{F}_{q}^{\vee} \backslash\{1\}$. We have $\operatorname{Tr}\left(F \zeta ; H_{\mathrm{c}}^{2}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right)=q$.
Proof. Similarly to the proof of Corollary 4.6, we have

$$
\begin{aligned}
\operatorname{Tr}\left(F \zeta ; H_{\mathrm{c}}^{2}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right) & =\operatorname{Tr}\left(F \zeta ; H_{\mathrm{c}}^{*}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right) \\
& =\frac{1}{q^{2}} \sum_{\eta \in \mathbb{F}_{q}} \psi^{-1}(\eta) \operatorname{Tr}\left(F \eta \zeta ; H^{*}\left(\bar{X}_{\overline{\mathbb{F}}_{q}}, \overline{\mathbb{Q}}_{\ell}(1)\right)\right)=q
\end{aligned}
$$

by Lemma 4.7.
Proposition 4.9. Let $g_{0}=(u, 1, \ldots, 1) \in \operatorname{SL}_{2}\left(\mathbb{F}_{q}\right)^{n} \subset \operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$, where $u \in \operatorname{SL}_{2}\left(\mathbb{F}_{q}\right)$ is as in (4.8). We have

$$
W_{n, \psi}[\nu]^{+}\left(g_{0}\right)-W_{n, \psi}[\nu]^{-}\left(g_{0}\right)=q^{n-1} G(\psi) .
$$

In particular, we have $W_{n, \psi}[\nu]^{+}\left(g_{0}\right) \neq W_{n, \psi}[\nu]^{-}\left(g_{0}\right)$.
Proof. Let $\kappa \in\{ \pm\}$. Let ν_{κ} be the character of $\mu_{q+1} \rtimes \operatorname{Gal}\left(\mathbb{F}_{q^{2}} / \mathbb{F}_{q}\right)$ extending ν by the condition $\nu_{\kappa}\left(\operatorname{Fr}_{q}\right)=\kappa$. For $g \in \operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$, the trace $W_{n, \psi}[\nu]^{\kappa}(g)=W_{n, \psi}\left[\nu_{\kappa}\right](g)$ equals

$$
\begin{aligned}
& \frac{1}{\left|\mu_{q+1} \rtimes \operatorname{Gal}\left(\mathbb{F}_{q^{2}} / \mathbb{F}_{q}\right)\right|} \sum_{h \in \mu_{q+1} \times \operatorname{Gal}\left(\mathbb{F}_{q^{2}} / \mathbb{F}_{q}\right)} \nu_{\kappa}(h)^{-1} W_{n, \psi}(h g) \\
& =\frac{1}{2(q+1)} \sum_{\zeta \in \mu_{q+1}} \nu(\zeta)\left(\operatorname{Tr}\left(\zeta g ; H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{\prime *} \mathscr{L}_{\psi}(n)\right)\right)+\kappa \operatorname{Tr}\left(F \zeta g ; H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{\prime *} \mathscr{L}_{\psi}(n)\right)\right)\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& W_{n, \psi}[\nu]^{+}\left(g_{0}\right)-W_{n, \psi}[\nu]^{-}\left(g_{0}\right) \\
& =\frac{1}{q+1} \sum_{\zeta \in \mu_{q+1}} \nu(\zeta) \operatorname{Tr}\left(F \zeta g_{0} ; H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{* *} \mathscr{L}_{\psi}(n)\right)\right) \\
& =\frac{1}{q+1} \sum_{\zeta \in \mu_{q+1}} \nu(\zeta) \operatorname{Tr}\left(F \zeta u ; H_{\mathrm{c}}^{2}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right) \operatorname{Tr}\left(F \zeta ; H_{\mathrm{c}}^{2}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right)^{n-1} \\
& =\frac{q^{n-1}}{q+1} \sum_{\zeta \in \mu_{q+1}} \nu(\zeta) \operatorname{Tr}\left(F \zeta u ; H_{\mathrm{c}}^{2}\left(\mathbb{A}^{2}, \mathscr{L}_{\psi}^{0}(1)\right)\right)=q^{n-1} G(\psi),
\end{aligned}
$$

where the second equality follows from the Künneth formula, the third one follows from Corollary 4.8 and the last one follows from Corollary 4.6.

5 Representation of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$

5.1 Weil representation of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$

Assume that $p \neq 2$ in this subsection. Let $\psi \in \mathbb{F}_{q}^{\vee} \backslash\{1\}$. A Weil representation of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$ associated to ψ is studied in [Gér77] and [How73], which we denote by ω_{ψ}. This has dimension q^{n}, and splits to two irreducible representations $\omega_{\psi,+}$ and $\omega_{\psi,-}$, which are of dimensions $\left(q^{n}+1\right) / 2$ and $\left(q^{n}-1\right) / 2$, respectively by [Gér77, Corollary 4.4 (a)]. For $\psi \in \mathbb{F}_{q}^{\vee}$ and $a \in \mathbb{F}_{q}$, let ψ_{a} denote the character of \mathbb{F}_{q} defined by $x \mapsto \psi(a x)$ for $x \in \mathbb{F}_{q}$. For $\psi \in \mathbb{F}_{q}^{\vee} \backslash\{1\}$, it is known that $\omega_{\psi, \kappa} \simeq \omega_{\psi_{a}, \kappa}$ if and only if $a \in\left(\mathbb{F}_{q}^{\times}\right)^{2}$ by [Shi80, Corollary 2.12].

For an element $s \in \mathrm{SO}_{2 n+1}\left(\mathbb{F}_{q}\right)$, let $\operatorname{Spec}(s)$ denote the set of the eigenvalues of s as an element of $\mathrm{GL}_{2 n+1}\left(\mathbb{F}_{q}\right)$. For $\kappa \in\{ \pm\}$, let $s_{\kappa} \in \mathrm{SO}_{2 n+1}\left(\mathbb{F}_{q}\right)$ be a semisimple element such that $\operatorname{Spec}\left(s_{\kappa}\right)=\{1,-1, \ldots,-1\}$ and $C_{\mathrm{SO}_{2 n+1}\left(\mathbb{F}_{q}\right)}\left(s_{\kappa}\right)=\mathrm{O}_{2 n}^{\kappa}\left(\mathbb{F}_{q}\right)$.

Lemma 5.1. We have $\omega_{\psi, \kappa} \in \mathcal{E}\left(\operatorname{Sp}_{2 n},\left(s_{\kappa}\right)\right)$ for $\kappa \in\{ \pm\}$.
Proof. We know that there are two irreducible representations in $\mathcal{E}\left(\operatorname{Sp}_{2 n},\left(s_{\kappa}\right)\right)$ of degree $\left(q^{n}+\kappa\right) / 2$ by [DM91, 13.23 Theorem, 13.24 Remark]. Hence the claim follows from [LOST10, Lemma 4.9].

By Lemma 2.6, these $\omega_{\psi, \kappa}$ remain irreducible after $\bmod \ell$ reduction. These mod ℓ irreducible modules of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$ are called Weil modules in [GMST02, §5]. We will use this terminology later. There are just two Weil modules for each dimension (cf. [GMST02, p. 305]).

Lemma 5.2. Assume that $p \neq 2$. We have $\omega_{\psi, \kappa} \notin \mathcal{E}_{\ell}\left(\operatorname{Sp}_{2 n},(1)\right)$ for any $\psi \in \mathbb{F}_{q}^{\vee} \backslash\{1\}$ and $\kappa \in\{ \pm\}$.

Proof. This follows from Lemma 2.5, Lemma 5.1 and $\ell \neq 2$.
Remark 5.3. If $n=2, p \neq 2$ and $\ell=2$, the representation $\omega_{\psi, \kappa}$ belongs to the principal block by [Whi90, p. 710].

5.2 Frobenius action

In the sequel, every cohomology is an $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation, and every homomorphism is $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-equivariant. Let $\Lambda \in\left\{\overline{\mathbb{Q}}_{\ell}, \mathcal{O}, \overline{\mathbb{F}}_{\ell}\right\}$. Let $\psi \in \operatorname{Hom}\left(\mathbb{F}_{q}, \Lambda^{\times}\right) \backslash\{1\}$ and $\chi \in$ $\operatorname{Hom}\left(\mu_{q+1}, \Lambda^{\times}\right)$such that $\chi^{2}=1$. We set

$$
H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)^{\kappa}= \begin{cases}H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}}^{\prime}, \Lambda\right)^{\mathrm{Fr}_{q}=\kappa q^{n-1}} & \text { if } \chi=1, \\ H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \mathbb{F}_{q}}^{\prime}, \mathscr{K}_{\nu}\right)^{\mathrm{Fr}_{q}=-\kappa q^{n} G(\psi)^{-1}} & \text { if } \chi=\nu\end{cases}
$$

for $\kappa \in\{ \pm\}$.
Lemma 5.4. (1) We have a decomposition

$$
H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right) \simeq H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)^{+} \oplus H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)^{-} .
$$

(2) If $\Lambda=\mathcal{O}$, we have isomorphisms

$$
\begin{align*}
& H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}^{\prime}}^{\prime}, \mathscr{K}_{\chi}\right)^{\kappa} \otimes_{\mathcal{O}} \overline{\mathbb{F}}_{\ell} \simeq H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\bar{\chi}}\right)^{\kappa}, \\
& H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\chi}\right)^{\kappa} \otimes_{\mathcal{O}} \overline{\mathbb{Q}}_{\ell} \simeq W_{n, \psi}[\chi]^{\kappa} \tag{5.1}
\end{align*}
$$

for $\kappa \in\{ \pm\}$.
Proof. The claim (1) for $\Lambda=\overline{\mathbb{Q}}_{\ell}$ and the second isomorphism in (5.1) follow from Lemma 4.3 and [IT23, Lemma 3.4, Lemma 4.3, Corollary 4.6]. Then the claim (1) for $\Lambda=\mathcal{O}$ follows from Lemma 2.2 (2). Further, the claim (1) for $\Lambda=\overline{\mathbb{F}}_{\ell}$ and the first isomorphism in (5.1) follow from Proposition 3.3.

5.3 Non-unipotent representation

In the following we assume that $\ell \neq 2$. For $\chi \in \mu_{q+1}^{\vee}$, let $s_{\chi} \in \mathrm{SO}_{2 n+1}\left(\mathbb{F}_{q}\right)$ be a semisimple element corresponding to χ such that $\operatorname{Spec}\left(s_{\chi}\right)=\left\{1, \ldots, 1, \zeta_{\chi}, \zeta_{\chi}^{-1}\right\}$ for $\zeta_{\chi} \in \mu_{q+1}$ and

$$
C_{\mathrm{SO}_{2 n+1}\left(\mathbb{F}_{q}\right)}\left(s_{\chi}\right)= \begin{cases}\mathrm{SO}_{2 n-1}\left(\mathbb{F}_{q}\right) \times \mathrm{U}_{1}\left(\mathbb{F}_{q}\right) & \text { if } \chi^{2} \neq 1, \tag{5.2}\\ \mathrm{SO}_{2 n-1}\left(\mathbb{F}_{q}\right) \times \mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right) & \text { if } p \neq 2 \text { and } \chi=\nu\end{cases}
$$

We have

$$
\begin{equation*}
W_{n, \psi}[\chi] \in \mathcal{E}\left(\operatorname{Sp}_{2 n},\left(s_{\chi}\right)\right) \quad \text { if } \chi^{2} \neq 1, \quad W_{n, \psi}[\chi]^{\kappa} \in \mathcal{E}\left(\mathrm{Sp}_{2 n},\left(s_{\chi}\right)\right) \quad \text { if } \chi^{2}=1 \tag{5.3}
\end{equation*}
$$

by [IT23, Proposition 7.12]. We write as $q+1=\ell^{a} r$ with $(\ell, r)=1$.
Proposition 5.5. Let $\chi \in \mu_{q+1}^{\vee}$. We write as $\chi=\chi_{\ell^{a}} \chi_{r}$ as before.
(1) If $\chi_{r}^{2} \neq 1$, the Brauer character $\overline{W_{n, \psi}[\chi]}$ is irreducible.
(2) Assume $p \neq 2$. For $\kappa \in\{ \pm\}$, the Brauer character $\overline{W_{n, \psi}[\nu]^{\kappa}}$ is irreducible.

Proof. To show the claim (1), we may assume that $\chi_{\ell^{a}}=1$ by Corollary 3.5. Then the claims follow from Lemma 2.6 using Lemma 4.1, (5.2) and (5.3).

Lemma 5.6. The Brauer characters $\overline{W_{n, \psi}[\nu]^{+}}$and $\overline{W_{n, \psi}[\nu]^{-}}$are different.
Proof. It suffices to show that the characters $W_{n, \psi}[\nu]^{+}$and $W_{n, \psi}[\nu]^{-}$are distinct restricted to the subset consisting of ℓ-regular elements of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$. The element g_{0} in Proposition 4.9 is of order p and ℓ-regular by $(p, \ell)=1$. Hence the claim follows from Proposition 4.9.

5.4 Unipotent representation

Lemma 5.7. Assume that $n \geq 2$. Then the $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{-}$ is irreducible.

Proof. The $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $W_{n}[1]^{-}$is irreducible modulo ℓ by Lemma 4.1 and [GT04, (6), Corollary 7.5] if $p=2$ and [GMST02, Corollary 7.4] if $p \neq 2$. Hence the claim follows from (5.1).

Assume that $\ell \mid q+1$ and $n \geq 2$. By Proposition 3.3 (2) and Lemma 3.4 (2), we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}_{q}}}^{\prime}, \mathscr{K}_{\chi_{\ell} a}\right) \otimes_{\mathcal{O}} \overline{\mathbb{F}}_{\ell} \rightarrow H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right) \xrightarrow{\delta} \mathbf{1} \rightarrow 0 \tag{5.4}
\end{equation*}
$$

for any non-trivial character χ_{ℓ}. By Lemma 5.7, the restriction of δ to $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{-}$ is a zero map. We denote by δ^{+}the restriction of δ to $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$. Then we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{ker} \delta^{+} \rightarrow H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+} \rightarrow \mathbf{1} \rightarrow 0 \tag{5.5}
\end{equation*}
$$

Proposition 5.8. Assume that $p=2$ and $n \geq 2$. If $\ell \nmid q+1$, the $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$is irreducible.

Assume $\ell \mid q+1$. Then, the $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $\operatorname{ker} \delta^{+}$is irreducible. The representation $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$is indecomposable of length two with irreducible constitutes 1 and $\operatorname{ker} \delta^{+}$.

Proof. We have

$$
W_{n, \psi}[1]^{-}=\alpha_{n}, \quad W_{n, \psi}[1]^{+}=\beta_{n}
$$

in the notation of [GT04, Definition (6)] by Lemma 4.1, [GT04, (4)] and [TZ97, Lemma 4.1].

Assume $\ell \nmid q+1$. By Proposition 3.3 (1), we have

$$
H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathcal{O}\right) \otimes_{\mathcal{O}} \overline{\mathbb{F}}_{\ell} \simeq H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)
$$

The representation $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$is irreducible by (5.1) and [GT04, Corollary 7.5 (i)].

Assume $\ell \mid q+1$. By (5.1) and [GT04, Corollary 7.5 (i)], $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$has two irreducible constitutes. Hence, ker δ^{+}is irreducible by (5.5).

We show that $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$is indecomposable. Assume that it is not so. Then it is completely reducible, and is isomorphic to a direct sum of $\operatorname{ker} \delta^{+}$and $\mathbf{1}$ by the Jordan-Hölder theorem. This is contrary to Proposition 4.4 (2). Hence, we obtain the claim.

Proposition 5.9. Assume that $n \geq 2, p \neq 2$ and $\ell \mid q+1$. The $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $\operatorname{ker} \delta^{+}$is irreducible. The $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$is indecomposable of length two with irreducible constitutes $\mathbf{1}$ and $\operatorname{ker} \delta^{+}$.

Proof. Let U be as in $\S 4.2$. Since $U\left(\mathbb{F}_{q}\right)^{n}$ is a p-group and $\ell \neq p$, any $U\left(\mathbb{F}_{q}\right)^{n}$-representation over $\overline{\mathbb{F}}_{\ell}$ is semisimple. By Proposition 4.4 (2) and (5.5), we have

$$
\begin{equation*}
\operatorname{dim}\left(H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}\right)^{U\left(\mathbb{F}_{q}\right)^{n}}=1 \tag{5.6}
\end{equation*}
$$

We set $m=\left(q^{n}-q\right)\left(q^{n}-1\right) /(2(q+1))$. We assume that ker δ^{+}has more than one irreducible constitutes. By the assumption $p \neq 2, \ell \neq 2$ and $\ell \mid q+1$, we have $q>3$. We have dim ker $\delta^{+}=m+q^{n}-1<2 m$. Hence we can take an irreducible constitute of $\operatorname{ker} \delta^{+}$whose dimension is less than m, for which we write β. By (5.5) and (5.6), we have $\operatorname{dim} \beta^{U\left(\mathbb{F}_{q}\right)^{n}}=0$. Hence, β is not a trivial representation of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$. By [GMST02,

Theorem 2.1], β must be a Weil module. The $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{Q}}_{\ell}\right)^{+}$ is unipotent by (4.2), Lemma 4.3 and [IT23, Corollary 7.13]. Hence ker δ^{+}belongs to a unipotent block. Since β and ker δ^{+}belong to the same block, this is contrary to Lemma 5.2. Hence, we obtain the first claim.

By (5.5) and the first claim, $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$has length two. The sequence (5.5) is non-split by Proposition 4.4 (2). Hence the second claim follows.
Lemma 5.10. Let $\psi \in \operatorname{Hom}\left(\mathbb{F}_{q,+}, \mathbb{F}^{\times}\right) \backslash\{1\}$. The canonical map

$$
H_{\mathrm{c}}^{n}\left(\mathbb{A}^{n}, \pi^{*} \mathscr{L}_{\psi}\right) \rightarrow H^{n}\left(\mathbb{A}^{n}, \pi^{*} \mathscr{L}_{\psi}\right)
$$

is an isomorphism.
Proof. Let C be the affine curve over \mathbb{F}_{q} defined by $z^{q}+z=t^{q+1}$ in $\mathbb{A}_{\mathbb{F}_{q}}^{2}$. We have $H_{\mathrm{c}}^{1}\left(C_{\overline{\mathbb{F}}_{q}}, \mathbb{F}\right)[\psi] \simeq H_{\mathrm{c}}^{1}\left(\mathbb{A}^{1}, \mathscr{L}_{\psi}\right)$. Hence by the Künneth formula, we have

$$
H_{\mathrm{c}}^{n}\left(\mathbb{A}^{n}, \pi^{*} \mathscr{L}_{\psi}\right) \simeq\left(H_{\mathrm{c}}^{1}\left(C_{\overline{\mathbb{F}}_{q}}, \mathbb{F}\right)[\psi]\right)^{\otimes n}, \quad H^{n}\left(\mathbb{A}^{n}, \pi^{*} \mathscr{L}_{\psi}\right) \simeq\left(H^{1}\left(C_{\overline{\mathbb{F}}_{q}}, \mathbb{F}\right)[\psi]\right)^{\otimes n}
$$

Hence it suffices to show that the canonical map $H_{\mathrm{c}}^{1}\left(C_{\overline{\mathbb{F}}}, \mathbb{F}\right) \rightarrow H^{1}\left(C_{\overline{\mathbb{F}}_{q}}, \mathbb{F}\right)$ is an isomorphism. The curve C has the smooth compactification \bar{C} defined by $X^{q} Y+X Y^{q}=Z^{q+1}$ in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$. The complement $\bar{C} \backslash C$ consists of an \mathbb{F}_{q}-valued point. Hence, the claim follows.
Lemma 5.11. Let $\psi \in \operatorname{Hom}\left(\mathbb{F}_{q}, \mathbb{F}^{\times}\right) \backslash\{1\}$. Then $H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{*} \mathscr{L}_{\psi}\right)[1]$ is a self-dual representation of $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$.
Proof. By Poincaré duality, we have an isomorphism

$$
H^{2 n}\left(\mathbb{A}^{2 n}, \pi^{\prime *} \mathscr{L}_{\psi}\right) \simeq H_{\mathrm{c}}^{2 n}\left(\mathbb{A}^{2 n}, \pi^{\prime *} \mathscr{L}_{\psi^{-1}}\right)^{\vee}
$$

Hence the claim follows from (2.2), (4.2), Lemma 5.10 and [IT23, Remark 3.2].
Proposition 5.12. Assume that $n \geq 2, p \neq 2$ and $\ell \nmid q+1$.
(1) The $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{+}$is irreducible.
(2) For each $\kappa \in\{ \pm\}$, the $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \overline{\mathbb{F}}_{\ell}\right)^{\kappa}$ is self-dual.

Proof. For $\kappa \in\{ \pm\}$, we simply write W^{κ} for $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}}^{q}, ~, \overline{\mathbb{F}}_{\ell}\right)^{\kappa}$.
We show the first claim. Assume $(n, q)=(2,3)$. We have $\left|\operatorname{Sp}_{4}\left(\mathbb{F}_{3}\right)\right|=2^{7} \cdot 3^{4} \cdot 5$ and $\operatorname{dim} W^{+}=15$ by Lemma 4.1. By the assumption, we have $\ell \neq 2,3$. Hence, the claim in this case follows from the Brauer-Nesbitt theorem.

Assume $(n, q) \neq(2,3)$. Let m be as in the proof of Proposition 5.9. Assume that W^{+}is not irreducible. By $(n, q) \neq(2,3)$, we can take an irreducible component β of W^{+}whose dimension is less than m. Then β is a trivial module or a Weil module by [GMST02, Theorem 2.1]. We know that β is a trivial module by Lemma 5.2. By the last isomorphism in Proposition 4.4 (2), W^{+}has at most one trivial module as irreducible constitutes. Hence, W^{+}must have length two by a similar argument as above. By $\left(W^{+}\right)^{\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)}=0$ as in Proposition 4.4 (2), we have a non-split surjective homomorphism $W^{+} \rightarrow \mathbf{1}$. We set $W=W^{+} \oplus W^{-}$. Since W is self-dual by Lemma 4.3 and Lemma 5.11, we have an injective homomorphism $\mathbf{1} \hookrightarrow W$. By taking the $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-fixed part of this, we have $W^{\mathrm{SP}_{2 n}\left(\mathbb{F}_{q}\right)} \neq 0$, which is contrary to Proposition 4.4 (2). Hence W^{+}is irreducible.

We show the second claim. For each $\kappa \in\{ \pm\}$, the $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$-representation W^{κ} is irreducible by Lemma 5.7 and the first claim. Since the dimensions of W^{+}and W^{-}are different, we obtain the claim by the self-duality of W.

6 Mod ℓ Howe correspondence

We formulate a mod ℓ Howe correspondence for $\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2}^{-}\right)$using mod ℓ cohomology of $Y_{2 n}^{\prime}$, and show that it is compatible with the ordinary Howe correspondence.

6.1 Representation of $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$

Let $W=\mathbb{F}_{q^{2}}$. We consider the quadratic form $Q: W \rightarrow \mathbb{F}_{q} ; x \mapsto x^{q+1}$. Recall that O_{2}^{-}is the orthogonal group over \mathbb{F}_{q} defined by Q. Clearly, we have $Q(\zeta x)=Q(x)$ for any $x \in W$ and $\zeta \in \mu_{q+1}$. Hence, we have a natural inclusion $\mu_{q+1} \hookrightarrow \mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$. We regard $F_{W}: W \rightarrow W ; x \mapsto x^{q}$ as an element of $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$. We can easily check that $\mu_{q+1} \cap\left\langle F_{W}\right\rangle=\{1\}$. This group $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$ is isomorphic to the dihedral group of order $2(q+1)$ by [KL90, Proposition 2.9.1]. We fix the isomorphism

$$
\mu_{q+1} \rtimes(\mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{\sim} \mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right) ; \quad(\zeta, i) \mapsto \zeta F_{W}^{i} .
$$

For a pair $(\xi, \kappa) \in \operatorname{Hom}\left(\mu_{q+1}, \mu_{2}\left(\overline{\mathbb{F}}_{\ell}\right)\right) \times\{ \pm\}$ such that $\chi_{0}^{2}=1$, the map

$$
(\xi, \kappa): \mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right) \rightarrow \mu_{2}\left(\overline{\mathbb{F}}_{\ell}\right) ;(x, k) \mapsto \kappa^{k} \chi_{0}(x)
$$

for $x \in \mu_{q+1}$ and $k \in \mathbb{Z} / 2 \mathbb{Z}$ is a character. For a character $\xi \in \operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{F}}_{\ell}^{\times}\right)$such that $\xi^{2} \neq 1$, the two-dimensional representation $\sigma_{\xi}=\operatorname{Ind}_{\mu_{q+1}}^{\mathrm{O}_{2}\left(\mathbb{F}_{q}\right)} \xi$ is irreducible. Note that $\sigma_{\xi} \simeq \sigma_{\xi^{-1}}$ as $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$-representations. Any irreducible representation of $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$ is isomorphic to the one of these representations.

6.2 Formulation

Let $\operatorname{Irr}_{\overline{\mathbb{F}}_{\ell}}\left(\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)\right)$ be the set of irreducible representations of $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$ over $\overline{\mathbb{F}}_{\ell}$. Let $1 \in$ $\mathbb{Z} / 2 \mathbb{Z}$ act on $\operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{F}}_{\ell}^{\times}\right)$by $\xi \mapsto \xi^{-1}$. Then $\operatorname{Irr}_{\overline{\mathbb{F}}_{\ell}}\left(\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)\right)$ is parametrized by

$$
\left\{\xi \in \operatorname{Hom}\left(\mu_{q+1}, \overline{\mathbb{F}}_{\ell}^{\times}\right) \mid \xi^{2} \neq 1\right\} /(\mathbb{Z} / 2 \mathbb{Z}) \cup\left\{(\xi, \kappa) \mid \xi \in \operatorname{Hom}\left(\mu_{q+1}, \mu_{2}\left(\overline{\mathbb{F}}_{\ell}\right)\right), \kappa \in\{ \pm\}\right\}
$$

as in $\S 6.1$.
Assume $n \geq 2$. We define a $\bmod \ell$ Howe correspondence

$$
\Theta_{\ell}: \operatorname{Irr}_{\overline{\mathbb{F}}_{\ell}}\left(\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)\right) \rightarrow\left\{\text { the representations of } \mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right) \text { over } \overline{\mathbb{F}}_{\ell}\right\}
$$

by

$$
[\xi] \mapsto H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\xi}\right), \quad(\xi, \kappa) \mapsto H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}}_{q}}^{\prime}, \mathscr{K}_{\xi}\right)^{\kappa} .
$$

Theorem 6.1. Let τ be an irreducible representation of $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$ over $\overline{\mathbb{F}}_{\ell}$. Then $\Theta_{\ell}(\tau)$ is irreducible except the case where $\ell \mid q+1$ and τ corresponds to $(1,+)$, in which case $\Theta_{\ell}(\tau)$ is a non-trivial extension of the trivial representation by an irreducible representation. Furthermore, if $\tau, \tau^{\prime} \in \operatorname{Irr}_{\overline{\mathbb{F}}_{\ell}}\left(\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)\right)$ are different, $\Theta_{\ell}(\tau)$ and $\Theta_{\ell}\left(\tau^{\prime}\right)$ have no irreducible constituent in common.

Proof. The first claim follows from Proposition 5.5, Lemma 5.7, Proposition 5.8, Proposition 5.9 and Proposition 5.12.

By Lemma 2.5 and (5.3) for $\chi \in \mu_{r}^{\vee}$, the representations $H_{\mathrm{c}}^{2 n-1}\left(Y_{2 n, \overline{\mathbb{F}_{q}},}^{\prime}, \mathscr{K}_{\xi}\right)$ of $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$ for $\xi \in \operatorname{Hom}\left(\mu_{r}, \overline{\mathbb{F}}_{\ell}^{\times}\right)$have no irreducible constituent in common. Therefore the second claim follows from Lemma 4.1, (5.1) and Lemma 5.6.

We extend Θ_{ℓ} to the set of finite-dimensional semisimple representations of $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$ over $\overline{\mathbb{F}}_{\ell}$ by additivity. Let Θ be the Howe correspondence for $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right) \times \mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)(c f$. [IT23, §7.2]).

Proposition 6.2. Let π be an irreducible representation of $\mathrm{O}_{2}^{-}\left(\mathbb{F}_{q}\right)$ over $\overline{\mathbb{Q}}_{\ell}$. We have an injection

$$
\overline{\Theta(\pi)}{ }^{\mathrm{ss}} \hookrightarrow \Theta_{\ell}\left(\bar{\pi}^{\mathrm{ss}}\right),
$$

where $\overline{(-)}$ ss denotes the semi-simplification of a mod ℓ reduction. The injection is an isomorphism except the cases where π corresponds to $\chi=\chi_{r} \chi_{\ell^{a}}$ and we have $\chi_{r}=1$, $\chi_{\ell^{a}} \neq 1$.

Proof. This follows from (5.1).
Remark 6.3. A mod ℓ Howe correspondence is studied in [Aub94] in a different way and in a general setting under $p \neq 2$ up to semi-simplifications.

References

[Aub94] A.-M. Aubert, Séries de Harish-Chandra de modules et correspondance de Howe modulaire, J. Algebra 165 (1994), no. 3, 576-601.
[BM89] M. Broué and J. Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math. 395 (1989), 56-67.
[Bon11] C. Bonnafé, Representations of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$, vol. 13 of Algebra and Applications, Springer-Verlag London, Ltd., London, 2011.
[Dim92] A. Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992.
[DM91] F. Digne and J. Michel, Representations of finite groups of Lie type, vol. 21 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1991.
[FS82] P. Fong and B. Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), no. 1, 109-153.
[Gér77] P. Gérardin, Weil representations associated to finite fields, J. Algebra 46 (1977), no. 1, 54-101.
[GMST02] R. M. Guralnick, K. Magaard, J. Saxl and P. H. Tiep, Cross characteristic representations of symplectic and unitary groups, J. Algebra 257 (2002), no. 2, 291-347.
[GT04] R. M. Guralnick and P. H. Tiep, Cross characteristic representations of even characteristic symplectic groups, Trans. Amer. Math. Soc. 356 (2004), no. 12, 4969-5023.
[HM78] R. Hotta and K. Matsui, On a lemma of Tate-Thompson, Hiroshima Math. J. 8 (1978), no. 2, 255-268.
[HM01] G. Hiss and G. Malle, Low-dimensional representations of special unitary groups, J. Algebra 236 (2001), no. 2, 745-767.
[How73] R. E. Howe, On the character of Weil's representation, Trans. Amer. Math. Soc. 177 (1973), 287-298.
[Ill81] L. Illusie, Théorie de Brauer et caractéristique d'Euler-Poincaré (d'après P. Deligne), in The Euler-Poincaré characteristic (French), vol. 82 of Astérisque, pp. 161-172, Soc. Math. France, Paris, 1981.
[IT19] N. Imai and T. Tsushima, Shintani lifts for Weil representations of unitary groups over finite fields, 2019, arXiv:1906.03615, to appear in Math. Res. Lett.
[IT23] N. Imai and T. Tsushima, Geometric construction of Heisenberg-Weil representations for finite unitary groups and Howe correspondences, Eur. J. Math. 9 (2023), no. 2, Paper No. 31, 34.
[KL90] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, vol. 129 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1990.
[LOST10] M. W. Liebeck, E. A. O'Brien, A. Shalev and P. H. Tiep, The Ore conjecture, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 939-1008.
[Lus77] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125-175.
[Sai72] M. Saito, Représentations unitaires des groupes symplectiques, J. Math. Soc. Japan 24 (1972), 232-251.
[Shi80] K. Shinoda, The characters of Weil representations associated to finite fields, J. Algebra 66 (1980), no. 1, 251-280.
[TZ97] P. H. Tiep and A. E. Zalesskii, Some characterizations of the Weil representations of the symplectic and unitary groups, J. Algebra 192 (1997), no. 1, 130-165.
[Wei64] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.
[Whi90] D. L. White, Decomposition numbers of $\operatorname{Sp}(4, q)$ for primes dividing $q \pm 1$, J. Algebra 132 (1990), no. 2, 488-500.

Naoki Imai
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
naoki@ms.u-tokyo.ac.jp
Takahiro Tsushima
Department of Mathematics and Informatics, Faculty of Science, Chiba University 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan
tsushima@math.s.chiba-u.ac.jp

