
ON IMAGES OF WEAK FANO MANIFOLDS

OSAMU FUJINO AND YOSHINORI GONGYO

Abstract. We consider a smooth projective morphism between
smooth complex projective varieties. If the source space is a weak
Fano (or Fano) manifold, then so is the target space. Our proof is
Hodge theoretic. We do not need mod p reduction arguments. We
also discuss related topics and questions.
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1. Introduction

Let f : X → Y be a smooth projective morphism between smooth
projective varieties defined over C. The following theorem is one of the
main results of this paper.

Theorem 1.1 (cf. Theorem 4.5). If X is a weak Fano manifold, that
is, −KX is nef and big, then so is Y .

Our proof of Theorem 1.1 is Hodge theoretic. We do not need mod
p reduction arguments. More precisely, we obtain Theorem 1.1 as an
application of Kawamata’s positivity theorem (cf. [K2]). By the same
method, we can recover the well-known result on Fano manifolds.
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Theorem 1.2 (cf. Theorem 4.7). If X is a Fano manifold, that is,
−KX is ample, then so is Y .

Our proof of Theorem 1.2 is completely different from the original
one by Kollár, Miyaoka, and Mori in [KMM]. It is the first proof which
does not use mod p reduction arguments. We raise a conjecture on the
semi-ampleness of anti-canonical divisors.

Conjecture 1.3. If −KX is semi-ample, then so is −KY .

We reduce Conjecture 1.3 to another conjecture on canonical bundle
formulas and give affirmative answers to Conjecture 1.3 in some special
cases (cf. Remark 4.2 and Theorem 4.4). In this paper, we obtain the
following theorem, which is a key result for the proof of Theorem 1.1
and Theorem 1.2.

Theorem 1.4 (cf. Theorem 4.1). If −KX is semi-ample, then −KY is
nef.

We note that the proof of Theorem 1.4 is also an application of
Kawamata’s positivity theorem. We note that it is the first time that
Theorem 1.4 is proved without mod p reduction arguments. The reader
will recognize that Kawamata’s positivity theorem is very powerful. We
can find related topics in [Z] and [D, Section 3.6]. Note that both of
them depend on mod p reduction arguments.

We summarize the contents of this paper. Section 2 is a preliminary
section. We recall Kawamata’s positivity theorem (cf. Theorem 2.2)
here. In Section 3, we treat log Fano varieties with only kawamata
log terminal singularities. The result obtained in this section will be
used in Section 4. In Section 4, we prove Theorem 1.1, Theorem 1.2,
and some related theorems. In Section 5, we give some comments and
questions on related topics. In the final section: Section 6, which is an
appendix, we give a mod p reduction approach to Theorem 1.1.
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We will work over C, the complex number field, from Section 2 to
Section 4.

2. Preliminaries

We will make use of the standard notation as in the book [KM].

Notation. For a Q-divisor D =
∑r

j=1 djDj on a normal variety X
such that Dj is a prime divisor for every j and Di ̸= Dj for i ̸= j, we
define

D+ =
∑
dj>0

djDj and D− = −
∑
dj<0

djDj.

We denote the round-up of D by pDq. Furthermore, let f : X → Y be
a surjective morphism of varieties. We define

Dh =
∑

f(Dj)=Y

djDj and Dv = D − Dh.

Let X be a normal variety and ∆ an effective Q-divisor on X such
that KX + ∆ is Q-Cartier. Let ϕ : Y → X be a projective resolu-
tion such that the union of the exceptional locus of ϕ and the strict
transform of ∆ has a simple normal crossing support on Y . We put

KY = ϕ∗(KX + ∆) +
∑

i

aiEi

where Ei is a prime divisor for every i and Ei ̸= Ej for i ̸= j. The
pair (X, ∆) is called kawamata log terminal (klt, for short) (resp. log
canonical (lc, for short)) pair if ai > −1 (resp. ai ≥ −1) for every i.

Definition 2.1 (Relative normal crossing divisors). Let f : X → Y be
a smooth surjective morphism between smooth varieties with connected
fibers and D =

∑
i Di a reduced divisor on X such that Dh = D,

where Di is a prime divisor for every i. We say that D is relatively
normal crossing if D satisfies the condition that for each closed point
x ∈ X, there exits an analytic open neighborhood U and u1, . . . , uk ∈
OX,x inducing a regular system of parameter on f−1f(x) at x, where
k = dim f−1f(x), such that D ∩ U = {u1 · · · ul = 0} for some l with
0 ≤ l ≤ k.
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Let us recall Kawamata’s positivity theorem in [K2]. It is the main
ingredient of this paper.

Theorem 2.2 (Kawamata’s positivity theorem). Let f : X → Y be a
surjective morphism of smooth projective varieties with connected fibers.
Let P =

∑
j Pj and Q =

∑
l Ql be simple normal crossing divisors on

X and Y , respectively, such that f−1(Q) ⊆ P and f is smooth over
Y \Q. Let D =

∑
j djPj be a Q-divisor (dj’s may be negative or zero),

which satisfies the following conditions:

(1) f : SuppDh → Y is relatively normal crossing over Y \ Q and
f(SuppDv) ⊆ Q,

(2) dj < 1 unless codimY f(Pj) ≥ 2,
(3) dimC(η) f∗O(p−Dq)⊗OY

C(η) = 1, where η is the generic point
of Y , and

(4) KX + D ∼Q f ∗(KY + L) for some Q-divisor L on Y .

Let

f ∗(Ql) =
∑

j

wljPj, where wlj > 0,

d̄j =
dj + wlj − 1

wlj

if f(Pj) = Ql,

δl = max{d̄j|f(Pj) = Ql},
∆0 =

∑
δlQl, and

M = L − ∆0.

Then M is nef. We sometimes call M (resp. ∆0) the moduli part
(resp. discriminant part).

Remark 2.3. In Theorem 2.2, we note that δl can be characterized as
follows. If we put

cl = sup{t ∈ Q |KX + D + tf∗Ql is lc over the generic point of Ql},
then δl = 1 − cl.

We give a remark on the Stein factorization. We will use Lemma 2.4
in Section 4. See also Remark 5.3 below.

Lemma 2.4 (Stein factorization). Let f : X → Y be a smooth projec-
tive morphism between smooth varieties. Let

f : X
h−→ Z

g−→ Y

be the Stein factorization. Then g : Z → Y is étale. Therefore, h :
X → Z is a smooth projective morphism between smooth varieties with
connected fibers.



ON IMAGES OF WEAK FANO MANIFOLDS 5

Proof. By assumption, Rif∗OX is locally free and

Rif∗OX ⊗ C(y) ≅ H i(Xy,OXy)

for every i and any y ∈ Y . By definition, Z = SpecY f∗OX . Since
g∗OZ ≅ f∗OX is locally free, g is flat. By construction,

Zy = SpecH0(Xy,OXy)

consists of n copies of SpecC for any y ∈ Y , where n is the rank of
f∗OX . Therefore, g is unramified. This implies that g is étale. Thus,
Z is a smooth variety and h : X → Z is a smooth morphism with
connected fibers. ¤

3. Log Fano varieties

The proof of the following theorem is essentially the same as [F1,
Theorem 1.2]. We will use similar arguments in Section 4.

Theorem 3.1. Let f : X → Y be a proper surjective morphism between
normal projective varieties with connected fibers. Let ∆ be an effective
Q-divisor on X such that (X, ∆) is klt. Assume that −(KX+∆+εf ∗H)
is semi-ample, where ε is a positive rational number and H is an ample
Cartier divisor on Y . Then we can find an effective Q-divisor ∆Y on
Y such that (Y, ∆Y ) is klt and −(KY + ∆Y ) is ample. In particular, if
KY is Q-Cartier, then −KY is big.

Proof. By replacing H with mH and ε with ε
m

for some sufficiently
large positive integer m, we can assume that H is very ample and
ε < 1. By replacing H with a general member of |H|, we can further
assume that (X, ∆+ εf ∗H) is klt. Let A be a general member of a free
linear system | −m(KX + ∆ + εf ∗H)| such that (X, ∆ + εf ∗H + 1

m
A)

is klt and

KX + ∆ + εf ∗H +
1

m
A ∼Q 0.

We put Γ = ∆ + εf ∗H + 1
m

A. Then we consider the following commu-
tative diagram:

X ′ ν //

f ′

²²

X

f
²²

Y ′
µ

// Y,

where

(i) X ′ and Y ′ are smooth projective varieties,
(ii) ν and µ are projective birational morphisms,
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(iii) we put L = −KY ′ and define a Q-divisor D on X ′ as follows:

KX′ + D = ν∗(KX + Γ),

and
(iv) there are simple normal crossing divisors P on X ′ and Q on

Y ′ which satisfy the conditions (1) of Theorem 2.2 and there
exists a set of sufficiently small non-negative rational numbers
{sl} such that µ∗H −

∑
l slQl is ample.

We see that f ′ : X ′ → Y ′, D, and L satisfy the conditions (1), (2), and
(4) in Theorem 2.2. Now we check the condition (3) in Theorem 2.2.
We put h = f ◦ ν.

Claim 1. OY = h∗OX′(p−Dq)

Proof of Claim 1. Since (X, Γ) is klt, we see that p−Dq is effective
and ν-exceptional. Thus it holds that ν∗OX′(p−Dq) ≅ OX . Since
f∗OX = OY , we have OY = h∗OX′(p−Dq). ¤

By Claim 1, we see that f ′ : X ′ → Y ′ and D satisfy the condition
(3) in Theorem 2.2 since µ is birational. If we take Q-divisors ∆0 and
M on Y ′ as in Theorem 2.2, then

KX′ + D ∼Q f ′∗(KY ′ + M + ∆0)

and M is nef. We have the following claim about ∆0.

Claim 2. ∆+
0 ≥ εµ∗H.

Proof of Claim 2. Since H is general, h∗H is reduced. We set h∗H =∑
j Pkj

. Note that the coefficient of Pkj
in D is ε for every j by the

generality of H and A. By the definition of d̄kj
, it holds that

d̄kj
= dkj

= ε.

Thus we have ∆+
0 ≥ εµ∗H. ¤

We decompose ε = ε′ + ε′′ such that ε′ and ε′′ are positive rational
numbers. Since M is nef, M +ε′(µ∗H−

∑
l slQl) is ample. Hence, there

exists an effective Q-divisor B such that M + ε′(µ∗H −
∑

l slQl) ∼Q B,
(Y ′, B + ε′

∑
l slQl + ∆+

0 + ε′′µ∗H) is klt, and Supp(B + ε′
∑

l slQl +
∆+

0 +ε′′µ∗H−∆−
0 ) is simple normal crossing. If ε′ is a sufficiently small

positive rational number, then we see that

Supp(B + ε′
∑

l

slQl + ∆+
0 + ε′′µ∗H − ∆−

0 )− = Supp ∆−
0 .

We set

∆′
0 = ∆+

0 − εµ∗H and Ω′ = B + ε′
∑

l

slQl + ∆′
0 + ε′′µ∗H − ∆−

0 .
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It holds that
KY ′ + Ω′ ∼Q KY ′ + L ∼Q 0.

By the following claim, µ∗Ω
′ is effective.

Claim 3 (cf. Claim (B) in [F1]). µ∗∆
−
0 = 0.

Proof of Claim 3. Let ∆−
0 = −

∑
k δlkQlk , where δlk < 0. If there exists

k and j such that p−djq < wlkj, it holds that −dj +1 ≤ wlkj since wlkj

is an integer. Then we obtain δlk ≥ 0. Thus, it holds that p−djq ≥ wlkj

for all k and j. Therefore we have p−Dq ≥ f ′∗Qlk . Since OY ′ = f ′
∗OX′ ,

we see that f ′
∗OX′(p−Dq) ⊇ OY ′(Qlk). By Claim 1, µ∗Qlk = 0. We

finish the proof of Claim 3. ¤
We put Ω = µ∗Ω

′. Then we see that Ω is effective by Claim 3,

KY ′ + Ω′ = µ∗(KY + Ω), KY + Ω ∼Q 0, and Ω ≥ ε′′H.

Thus (Y, ∆Y ) is klt and −(KY + ∆Y ) ∼Q ε′′H is ample if we put
∆Y = Ω − ε′′H ≥ 0. We finish the proof of Theorem 3.1. ¤
Remark 3.2. Let (X,B) be a projective klt pair. Then −(KX + B)
is semi-ample if and only if −(KX + B) is nef and abundant by [F3,
Theorem 1.1].

The following corollary is obvious by Theorem 3.1.

Corollary 3.3 (cf. [PS, Theorem 2.9]). Let f : X → Y be a proper
surjective morphism between normal projective varieties with connected
fibers. Let ∆ be an effective Q-divisor on X such that (X, ∆) is klt and
−(KX + ∆) is ample. Then there is an effective Q-divisor ∆Y on Y
such that (Y, ∆Y ) is klt and −(KY + ∆Y ) is ample.

For related topics, see [SS, Remark 6.5] and [FG, Section 5]. We
close this section with an easy corollary of Theorem 3.1.

Corollary 3.4. Let (X, ∆) be a projective klt pair such that −(KX +∆)
is semi-ample. Let n be a positive integer such that n(KX + ∆) is
Cartier. Then there is an effective Q-divisor ∆Y on

Y = Proj
⊕
m≥0

H0(X,OX(−mn(KX + ∆)))

such that (Y, ∆Y ) is klt and −(KY + ∆Y ) is ample.

Proof. By definition, Y is a normal projective variety and there is a
projective surjective morphism f : X → Y with connected fibers such
that −(KX + ∆) ∼Q f ∗H, where H is an ample Q-Cartier Q-divisor
on Y . Then we can apply Theorem 3.1. ¤
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4. Fano and weak Fano manifolds

In this section, we apply Kawamata’s positivity theorem to smooth
projective morphisms between smooth projective varieties.

We note that the statement of the following theorem is weaker than
[D, Corollary 3.15 (a)]. However, the proof of Theorem 4.1 has potential
for further generalizations. We describe it in details.

Theorem 4.1 (cf. [D, Corollary 3.15 (a)]). Let f : X → Y be a smooth
projective morphism between smooth projective varieties with connected
fibers. If −KX is semi-ample, then −KY is nef.

Proof. Let C be an integral curve on Y . Let A be a general member
of the free linear system | −mKX |. Then there is a non-empty Zariski
open set U of Y such that C ∩U ̸= ∅ and that A is smooth over U . By
construction, KX + 1

m
A ∼Q 0. Let µ : Y ′ → Y be a resolution such that

µ is an isomorphism over U and µ−1(Y \U) is a simple normal crossing
divisor on Y ′. We consider the following commutative diagram.

X̃ = X ×Y Y ′
ϕ //

ef

²²

X

f

²²
Y ′ µ // Y

We note that f̃ : X̃ → Y ′ is smooth. We write KY ′ = µ∗KY +E. Then
SuppE = Exc(µ), where Exc(µ) is the exceptional locus of µ, and E is
effective. We put

K
eX + D̃ = ϕ∗(KX +

1

m
A) ∼Q 0.

Then

D̃ = −f̃ ∗E + ϕ∗ 1

m
A.

Note that K
eX = ϕ∗KX + f̃ ∗E. We put U ′ = µ−1(U). Then µ : U ′ → U

is an isomorphism. Let ψ : X ′ → X̃ be a resolution such that ψ is

an isomorphism over f̃−1(U ′) and that SuppA′ ∪ Suppf ′−1(Y ′ \ U ′) is
a simple normal crossing divisor, where A′ is the strict transform of A

on X ′ and f ′ = f̃ ◦ ψ : X ′ → Y ′. We define

KX′ + D = ψ∗(K
eX + D̃) ∼Q 0.

We can write
KX′ + D = f ′∗(KY ′ + ∆0 + M)

as in Kawamata’s positivity theorem (see Theorem 2.2). We put E =∑
i eiEi, where Ei is a prime divisor for every i and Ei ̸= Ej for i ̸= j.
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The coefficient of Ei in ∆0 is 1 − ci, where

ci = sup{t ∈ Q |KX′ + D + tf ′∗Ei is lc over the generic point of Ei}.
By construction,

ci = sup{t ∈ Q |K
eX + D̃ + tf̃ ∗Ei is lc over the generic point of Ei}.

Since

D̃ = −f̃ ∗E + ϕ∗ 1

m
A,

and ϕ∗ 1
m

A is effective, we can write ci = ei + ai for some ai ∈ Q with
ai ≤ 1. Thus, we have 1− ci = 1− ei − ai. Therefore, the coefficient of
Ei in E + ∆0 is

ei + 1 − ei − ai = 1 − ai ≥ 0.

So, we can see that E + ∆0 is effective. Since KY ′ + ∆0 + M ∼Q 0 and
KY ′ = µ∗KY + E, we have

−µ∗KY = −KY ′ + E ∼Q E + ∆0 + M.

Let C ′ be the strict transform of C on Y ′. Then

C · (−KY ) = C ′ · (−µ∗KY )

= C ′ · (E + ∆0 + M) ≥ 0.

It is because M is nef and Supp(E + ∆0) ⊂ Y ′ \ U ′. Therefore, −KY

is nef. ¤
We give a very important remark on Theorem 4.1.

Remark 4.2 (Semi-ampleness of −KY ). We use the same notation
as in Theorem 4.1 and its proof. It is conjectured that the moduli
part M is semi-ample (see, for example [A1, 0. Introduction]). Some
very special cases of this conjecture were treated in [F2] before [A1].
Unfortunately, the results in [F2] are useless for our purposes here. If
this semi-ampleness conjecture is solved, then we will obtain that −KY

is semi-ample.
Let y ∈ Y be an arbitrary point. We can choose A such that y ∈ U .

Since
−µ∗KY ∼Q M + E + ∆0,

E +∆0 is effective, and Supp(E +∆0) ⊂ Y ′ \U ′, we can find a positive
integer m and an effective Cartier divisor D on Y such that −mKY ∼ D
and that y ̸∈ SuppD. It implies that −KY is semi-ample.

By [K1], M is semi-ample if dim Y = dim X − 1. Therefore, −KY is
semi-ample when dim Y = dim X − 1.

In [A2, Theorem 3.3], Ambro proved that M is nef and abundant. So,
if Y is a surface, then we can check that −KY is semi-ample as follows.
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If ν(Y ′,M) = κ(Y ′,M) = 0 or 1, then M is semi-ample. Therefore, we
can apply the same argument as above. If ν(Y ′,M) = κ(Y ′,M) = 2,
then M is big. Since

−µ∗KY ∼Q M + E + ∆0

and E + ∆0 is effective, −µ∗KY is big. Therefore, −KY is nef and
big. In this case, −KY is semi-ample by the Kawamata–Shokurov base
point free theorem. Anyway, for an arbitrary point y ∈ Y , we can
always find a positive integer m and an effective Cartier divisor D on
Y such that −mKY ∼ D and that y ̸∈ SuppD. It means that −KY is
semi-ample.

In the end, in Theorem 4.1, −KY is semi-ample if dim Y ≤ 2. By
combining the above results, we know that −KY is semi-ample when
dim X ≤ 4. We conjecture that −KY is semi-ample if −KX is semi-
ample without any assumptions on dimensions.

Remark 4.3. In Remark 4.2, we used Ambro’s results in [A1] and
[A2]. When we investigate the moduli part M on Y by the theory
of variations of Hodge structures, we note the following construction.
Let π : V → X be a cyclic cover associated to m(KX + 1

m
A) ∼ 0. In

this case, π is a finite cyclic cover which is ramified only along SuppA.
Since SuppA is relatively normal crossing over U , we can construct a
simultaneous resolution f ◦ π : V → Y and make the union of the
exceptional locus and the inverse image of SuppA a simple normal
crossing divisor and relatively normal crossing over U by the canonical
desingularization theorem. Therefore, the moduli part M on X behaves
well under pull-backs. It is a very important remark.

The semi-ampleness of −KY is not so obvious even when −KX ∼Q 0.
The proof of the following theorem depends on some deep results on
the theory of variations of Hodge structures (cf. [A2] and [F3]).

Theorem 4.4. Let f : X → Y be a smooth projective morphism be-
tween smooth projective varieties. Assume that −KX ∼Q 0. Then
−KY is semi-ample.

Proof. By the Stein factorization (cf. Lemma 2.4), we can assume that
f has connected fibers. In this case, we can write

KX ∼Q f ∗(KY + M),

where M is the moduli part. By [A2, Theorem 3.3], we know that M is
nef and abundant. Therefore, −KY is nef and abundant. This implies
that −KY is semi-ample by [F3, Theorem 1.1]. ¤
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The following theorem is one of the main results of this paper. We
note that it was proved by Yasutake in a special case where f : X → Y
is a Pn-bundle (cf. [Y]).

Theorem 4.5 (Weak Fano manifolds). Let f : X → Y be a smooth
projective morphism between smooth projective varieties. If X is a weak
Fano manifold, then so is Y .

Proof. By taking the Stein factorization, we can assume that f has
connected fibers (cf. Lemma 2.4). By Theorem 4.1, −KY is nef since
−KX is semi-ample by the Kawamata–Shokurov base point free theo-
rem. By Kodaira’s lemma, we can find an effective Q-divisor ∆ on X
such that (X, ∆) is klt and that −(KX +∆) is ample. By Theorem 3.1,
we can find an effective Q-divisor ∆Y such that −(KY +∆Y ) is ample.
Therefore, −KY is big. So, −KY is nef and big. This means that Y is
a weak Fano manifold. ¤

The following example is due to Hiroshi Sato.

Example 4.6 (Sato). Let Σ be the fan in R3 whose rays are generated
by

x1 = (1, 0, 1), x2 = (0, 1, 0), x3 = (−1, 3, 0), x4 = (0,−1, 0),
y1 = (0, 0, 1), y2 = (0, 0,−1),

and their maximal cones are

〈x1, x2, y1〉, 〈x1, x2, y2〉, 〈x2, x3, y1〉, 〈x2, x3, y2〉,
〈x3, x4, y1〉, 〈x3, x4, y2〉, 〈x4, x1, y1〉, 〈x4, x1, y2〉.

Let ∆ be the fan obtained from Σ by successive star subdivisions along
the rays spanned by

z1 = x2 + y1 = (0, 1, 1)

and

z2 = x2 + z1 = 2x1 + y1 = (0, 2, 1).

We see that V = X(Σ), the toric threefold corresponding to the fan Σ
with respect to the lattice Z3 ⊂ R3, is a P1-bundle over Y = PP1(OP1 ⊕
OP1(3)). We note that the P1-bundle structure V → Y is induced
by the projection Z3 → Z2 : (x, y, z) 7→ (x, y). The toric variety
X = X(∆) corresponding to the fan ∆ was obtained by successive
blow-ups from V . We can check that X is a three-dimensional toric
weak Fano manifold and that the induced morphism f : X → Y is a
flat morphism onto Y since every fiber of f is one-dimensional. It is
easy to see that −KY is big but not nef.
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Therefore, if f is only flat, then −KY is not always nef even when
X is a weak Fano manifold.

Let us give a new proof of the well-known theorem by Kollár, Miyaoka,
and Mori (cf. [KMM]). We note that Y is not always Fano if f is only
flat. There exists an example in [W].

Theorem 4.7 (cf. [KMM, Corollary 2.9]). Let f : X → Y be a smooth
projective morphism between smooth projective varieties. If X is a Fano
manifold, then so is Y .

Proof. By taking the Stein factorization, we can assume that f has
connected fibers (cf. Lemma 2.4). By Theorem 4.5, −KY is nef and
big. Therefore, −KY is semi-ample by the Kawamata–Shokurov base
point free theorem. Thus, it is sufficient to see that C · (−KY ) > 0
for every integral curve C on Y . Let C be an integral curve C on
Y . We take a general very ample divisor H on Y . Let ε be a small
positive rational number. Then KX + εf ∗H is anti-ample. Let A be
a general member of the free linear system | − m(KX + εf ∗H)|. We
can assume that there is a non-empty Zariski open set U of Y such
that H is smooth on U , Supp(A + f ∗H) is simple normal crossing on
f−1(U), SuppA is smooth over U , and C ∩H ∩U ̸= ∅. Apply the same
arguments as in the proof of Theorem 4.1 to

KX + εf ∗H +
1

m
A ∼Q 0.

Then we obtain a projective birational morphism µ : Y ′ → Y from a
smooth projective variety Y ′ such that µ is an isomorphism over U and
Q-divisors ∆0 and M on Y ′ as before. By construction, ∆0 contains
εH ′, where H ′ is the strict transform of H on Y ′ (cf. the proof of
Theorem 3.1). Therefore, we have

C · (−KY ) = C ′ · (E + ∆0 + M) > 0

as in the proof of Theorem 4.1. Thus, −KY is ample. ¤
We can prove the following theorem by the same arguments. It is a

generalization of Theorem 4.7.

Theorem 4.8. Let f : X → Y be a smooth projective morphism be-
tween smooth projective varieties. Let H be an ample Cartier divisor
on Y . Assume that −(KX + εf ∗H) is semi-ample for some positive
rational number ε. Then −KY is ample, that is, Y is a Fano manifold.

Proof. By Lemma 2.4, we can assume that f has connected fibers. By
Theorem 3.1, we see that −KY is big. By the proof of Theorem 4.7,
we can see that C · (−KY ) > 0 for every integral curve C on Y . By
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the Kawamata–Shokurov base point free theorem, −KY is semi-ample.
Thus, −KY is ample. ¤

5. Comments and Questions

In this section, we will work over an algebraically closed field k of
arbitrary characteristic. We denote the characteristic of k by chark.

5.1. Let f : X → Y be a smooth projective morphism between smooth
projective varieties defined over k.

(A) If −KX is ample, that is, X is Fano, then so is −KY .

It was obtained by Kollár, Miyaoka, and Mori in [KMM]. Their proof
is an application of the deformation theory of morphisms from curves
invented by Mori. It needs mod p reduction arguments even when
chark = 0. In the case chark = 0, we gave a Hodge theoretic proof
without using mod p reduction arguments in Theorem 4.7.

(N) If −KX is nef, then so is −KY .

This result can be proved by the same method as in [KMM] (cf. [M],
[Z], and [D, Corollary 3.15 (a)]). In the case chark = 0, we do not
know whether we can prove it without mod p reduction arguments or
not.

(NB) If −KX is nef and big, that is, X is weak Fano, then so is −KY

when chark = 0.

It was proved in Theorem 4.5. We do not know whether this statement
holds true or not in the case chark > 0. See also Section 6: Appendix.

(SA) If −KX is semi-ample, is −KY semi-ample?

We have only some partial answers to this question. For details, see
Remark 4.2 and Theorem 4.4. In the case chark = 0, we note that −K
is semi-ample if and only if −K is nef and abundant (see Remark 3.2).

(B) If −KX is big, is −KY big?

The following example gives a negative answer to this question.

Example 5.2. Let E ⊂ P2 be a smooth cubic curve. We consider
f : X = PE(OE ⊕ OE(1)) → E = Y . Then, we see that −KX is big.
However, −KY is not big since E is a smooth elliptic curve.

Anyway, it seems to be difficult to construct nontrivial examples. It
is because the smoothness of f is a very strong condition.

We close this section with a remark on Lemma 2.4. It may be indis-
pensable when k ̸= C.
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Remark 5.3. Lemma 2.4 holds true even when k ̸= C. We can check
it as follows. By the proof of Lemma 2.4, it is sufficient to see that
f∗OX is locally free and f∗OX ⊗ k(y) ≅ H0(Xy,OXy) for every closed
point y ∈ Y . Without loss of generality, we can assume that Y is affine.
Let us check that the natural map

f∗OX ⊗ k(y) → H0(Xy,OXy)

is surjective for every y ∈ Y . We take an arbitrary closed point y ∈
Y . We can replace Y with SpecOY,y. Let my be the maximal ideal
corresponding to y ∈ Y . We note that f∗OX ⊗ k(y) ≅ (f∗OX)∧y ⊗ k(y),
where (f∗OX)∧y is the formal completion of f∗OX at y. By the theorem
on formal functions (cf. [H, Theorem 11.1]), we have

(f∗OX)∧y ≅ lim
←−

H0(Xn,OXn),

where Xn = X ×Y SpecOY,y/m
n
y . Therefore, we can see that

(f∗OX)∧y ⊗ k(y) → H0(Xy,OXy)

is surjective. It is because H0(Xyi,OXyi
) = k for every i, where Xy =∐

i Xyi is the irreducible decomposition of a smooth variety Xy. By the
base change theorem (cf. [H, Theorem 12.11]), we obtain the desired
results.

6. Appendix

In this appendix, we give another proof of Theorem 1.1 depending on
mod p reduction arguments. This proof is not related to Kawamata’s
positivity theorem.

First let us recall various results without proofs for the reader’s con-
venience.

6.1 (Preliminary results). The following theorem was obtained by the
same way as in [KMM].

Theorem 6.2 ([D, Corollary 3.15 (a)]). Let f : X → Y be a smooth
morphism of smooth projective varieties over an arbitrary algebraic
closed field. If −KX is nef, then so is −KY .

In [SS], Schwede and Smith established the following results on log
Fano varieties and global F -regular varieties. For various definitions
and details, see [SS] and [S]. See also [HWY] for related topics.

Theorem 6.3 (cf. [SS, Theorem 1.1]). Let X be a normal projective
variety over an F -finite field of prime characteristic. Suppose that X
is globally F -regular. Then there exists an effective Q-divisor ∆ on X
such that −(KX + ∆) is ample and that (X, ∆) is klt.
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For the definition of klt in any characteristic, see [SS, Remark 4.2].

Theorem 6.4 (cf. [SS, Theorem 5.1]). Let X be a normal projective
variety defined over a filed of characteristic zero. Suppose that there
exists an effective Q-divisor ∆ on X such that −(KX + ∆) is ample
and that (X, ∆) is klt. Then X has globally F -regular type.

Theorem 6.5 (cf. [SS, Corollary 6.4]). Let f : X → Y be a projective
morphism of normal projective varieties over an F -finite field of prime
characteristic. Suppose that f∗OX = OY . If X is a globally F -regular
variety, then so is Y .

We can find the following lemma in [L, Proposition 3.7 (a)].

Lemma 6.6. Let C be a smooth projective curve over a field k, let
K be an extension field of k, and let D be a Cartier divisor on C.
Suppose that π : CK := C ×k K → C is the natural projection. Then
degkD = degKπ∗D.

By the above lemma, we see the following lemma.

Lemma 6.7. Let X be a projective variety over a field k, let K be an
extension field of k, and let D be a Cartier divisor on X. Suppose that
π∗D is nef, where π : XK := X ×k K → X is the projection. Then D
is nef.

Proof. We take a morphism f : C → X from a smooth projective
curve. We consider the following commutative diagram:

CK

fK

²²

πC //

ª

C

f

²²
XK

²²

π //

ª

X

²²
SpecK // Speck

where CK := C ×k K. By the assumption, degKπC
∗(f ∗D) ≥ 0. Hence

degkf
∗D ≥ 0 by Lemma 6.6. Thus D is nef. ¤

Let us start the proof of Theorem 1.1.

Proof of Theorem 1.1. First, we note that −KX is semi-ample by the
Kawamata–Shokurov base point free theorem and that −KY is nef by
Theorem 6.2. It is sufficient to show that (−KY )dim Y > 0. By the
Stein factorization, we can assume that f has connected fibers. We
can take a finitely generated Z-algebra A, a non-empty affine open set
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U ⊆ SpecA, and smooth morphisms ϕ : X → U and ψ : Y → U such
that

X

ÂÂ@
@@

@@
@@

@
F // Y

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

U

and F ≅ f over the generic point of U and that −KX is semi-ample. We
take a general closed point p ∈ U . Note that the residue field k := κ(p)
of p has positive characteristic p. Let fp : Xp → Yp be the fiber of F
at p, and let K be an algebraic closure of k. By Theorem 6.4, we may
assume that Xp is globally F -regular. Let fp : Xp → Yp be the base
change of fp by SpecK, where Xp := Xp×k K and Yp := Yp×k K. Since
−KX is semi-ample, we see that −KXp

is semi-ample. In particular,
−KXp

is nef. Hence, we obtain that −KYp
is nef by Theorem 6.2. By

Lemma 6.7, −KYp is nef. By Theorem 6.5, Yp is globally F -regular.
Hence −KYp is nef and big. Thus (−KYp)

dimY > 0. Since ψ is flat,
(−KY )dimY > 0. Therefore, −KY is nef and big. ¤
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