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Preface

Throughout this thesis, we will work over C, the complex number field,
except Sections 6.5 and 6.6. We will make use of the standard notation and
definitions as in [KoMo] and [KaMaMa].

In Chapter 1, we collect the basic notation and results on divisors,
singularities of pairs, asymptotic base loci, the minimal model theory, and
the divisorial Zariski decomposition.

In Chapter 2, we prove the existence of good log minimal models for
dlt pairs of numerical log Kodaira dimension 0.

In Chapter 3, we consider a canonical bundle formula for generically
finite proper surjective morphisms and obtain subadjunction formulae for
minimal log canonical centers of log canonical pairs. We also treat related
topics and applications.

In Chapter 4, we use reduction maps to study the minimal model
program. Our main result is that the existence of a good minimal model
for a klt pair (X,∆) can be detected on the base of the (KX + ∆)-trivial
reduction map. Thus we show that the main conjectures of the minimal
model program can be interpreted as a natural statement on the existence
of curves on X.

In Chapter 5, we prove the finiteness of log pluricanonical represen-
tations for projective log canonical pairs with semi-ample log canonical
divisor. As a corollary, we obtain that the log canonical divisor of a pro-
jective semi log canonical pair is semi-ample if and only if so is the log
canonical divisor of its normalization. We also treat many other applica-
tions.

In Chapter 6, we treat a smooth projective morphism between smooth
complex projective varieties. If the source space is a weak Fano (or Fano)
manifold, then so is the target space. Our proof is Hodge theoretic. We do
not need mod p reduction arguments. We also discuss related topics and
questions.
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In Chapter 7, we consider semi-ampleness of the anti-log canonical
divisor of any weak log Fano pair with log canonical singularities. We
show semi-ampleness dose not hold in general by constructing several
examples. Based on those examples, we propose sufficient conditions
which seem to be the best possible and we prove semi-ampleness under
such conditions.

Chapters 3, 5, and 6 are based on joint works with Osamu Fujino [FG1],
[FG2], [FG3] and Chapter 4 is based on a joint work with Brian Lehmann
[GL].
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1
Preliminaries

In this chapter, we collect basic definitions and results that are used in the
subsequent chapters. In particular we explain the minimal model program
with scaling and results of Birkar–Cascini–Hacon–McKernan [BCHM] in
Section 1.3.2.

1.1 Divisors, singularities of pairs, and asymp-
totic base loci

Notation and Definition 1.1.1. Let K be the real number field R or the
rational number field Q. We setK>0 = {x ∈ K|x > 0}.

Let π : X → S be a projective morphism of normal quasi-projective
varieties and D a Z-Cartier divisor on X. We set the complete linear
system |D/S| = {E|D ∼Z,S E ≥ 0} of D over S. The base locus of the linear
system |D/S| is denoted by Bs|D/S|. When S = SpecC, we denote these by
simply |D| and Bs|D|.
Definition 1.1.2. For a K-Weil divisor D =

∑r
j=1 d jD j such that D j is a

prime divisor for every j and Di , D j for i , j, we define the round-
up pDq =

∑r
j=1pd jqD j (resp. the round-down xDy =

∑r
j=1xd jyD j), where for

every real number x, pxq (resp. xxy) is the integer defined by x ≤ pxq < x+1
(resp. x − 1 < xxy ≤ x). The fractional part {D} of D denotes D − xDy. We
define

D=1 =
∑
d j=1

D j, D≤1 =
∑
d j≤1

d jD j,

D<1 =
∑
d j<1

d jD j, and D>1 =
∑
d j>1

d jD j.
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We call D a boundary Q-divisor if 0 ≤ d j ≤ 1 for every j.

1.1.3 (Log resolution). Let X be a normal variety and let D be a K-divisor
on X. A log resolution f : Y→ X means that

(i) f is a proper birational morphism,

(ii) Y is smooth, and

(iii) Exc( f ) ∪ Supp f −1
∗ D is a simple normal crossing divisor on Y, where

Exc( f ) is the exceptional locus of f .

We recall the notion of singularities of pairs.

Definition 1.1.4 (Singularities of pairs). Let X be a normal variety and let
∆ be a K-divisor on X such that KX + ∆ is K-Cartier. We call (X,∆) is a log
pair. Let φ : Y→ X be a log resolution of (X,∆). We set

KY = φ
∗(KX + ∆) +

∑
aiEi,

where Ei is a prime divisor on Y for every i. The pair (X,∆) is called

(a) sub kawamata log terminal (subklt, for short) if ai > −1 for all i, or

(b) sub log canonical (sublc, for short) if ai ≥ −1 for all i.

If ∆ is effective and (X,∆) is subklt (resp. sublc), then we simply call it klt
(resp. lc).

Let (X,∆) be an lc pair. If there is a log resolution φ : Y → X of (X,∆)
such that Exc(φ) is a divisor and that ai > −1 for every φ-exceptional
divisor Ei, then the pair (X,∆) is called divisorial log terminal (dlt, for short).
Assume that (X,∆) is log canonical. If E is a prime divisor over X such that
a(E,X,∆) = −1, then cX(E) is called a log canonical center (lc center, for short)
of (X,∆), where cX(E) is the closure of the image of E on X. For the basic
properties of log canonical centers, see [F12, Section 9].

Definition 1.1.5 (Stratum). Let (X,∆) be an lc pair. A stratum of (X,∆)
denotes X itself or an lc center of (X,∆).

The following theorem was originally proved by Professor Christopher
Hacon (cf. [F12, Theorem 10.4], [KoKov, Theorem 3.1]). For a simpler
proof, see [F10, Section 4]:

Theorem 1.1.6 (Dlt blow-up). Let X be a normal quasi-projective variety and
∆ an effective R-divisor on X such that KX + ∆ is R-Cartier. Suppose that (X,∆)
is log canonical. Then there exists a projective birational morphism φ : Y → X
from a normal quasi-projective variety with the following properties:
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(i) Y is Q-factorial,

(ii) a(E,X,∆) = −1 for every φ-exceptional divisor E on Y, and

(iii) for
Γ = φ−1

∗ ∆ +
∑

E:φ-exceptional

E,

it holds that (Y,Γ) is dlt and KY + Γ = φ∗(KX + ∆).

The above theorem is very useful for studying log canonical singulari-
ties.

We will repeatedly use it in the subsequent chapters.

Definition and Lemma 1.1.7 (Different, cf. [Co]). Let (Y,Γ) be a dlt pair
and S a union of some components of xΓy. Then there exists an effective
Q-divisor DiffS(Γ) on S such that (KY+Γ)|S ∼Q KS+DiffS(Γ). The effectiveQ-
divisor DiffS(Γ) is called the different of Γ. Moreover it holds that (S,DiffS(Γ))
is sdlt.

Definition 1.1.8 (cf. [ELMNP]). Let π : X→ S be a projective morphism of
normal quasi-projective varieties and D an R-Cartier divisor on X. We set

B(D/S) =
∩

D∼S,RE≥0

Supp E, B≡(D/S) =
∩

D≡SE≥0

Supp E,

B+(D/S) =
∩
ϵ∈R>0

B(D − ϵA/S), and B−(D/Y) =
∪
ϵ∈R>0

B(D + ϵA/Y),

where A be a π-ample divisor. We remark that these definitions are inde-
pendent of the choice of A. When S = SpecC, we write simply B(D), B≡(D),
B+(D) and B−(D).

Definition 1.1.9. Let X be a normal variety and D a Q-Weil divisor. We
define that

R(X,D) =
∞⊕

m=0

H0(X, xmDy).

Finally, we identify that several different ways a divisor can be “excep-
tional” for a morphism.
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Definition 1.1.10 ([Ft1], [Nak, III, 5.a], [Lai, Definition 2.9] and [Ta]). Let
f : X → Y be a surjective projective morphism of normal quasi-projective
varieties with connected fibers and D an effective f -vertical R-Cartier di-
visor. We say that D is f -exceptional if

codim f (Supp D) ≥ 2.

We say that D is of insufficient fiber type with respect to f if

codim f (Supp D) = 1

and there exist a codimension 1 irreducible component P of f (Supp D) and
a prime divisor Γ such that f (Γ) = P and Γ 1 Supp(D).

We call D f -degenerate if for any prime divisor P on Y there is some
prime divisor Γ ⊂ Supp( f ∗P) such that f (Γ) = P and Γ 1 Supp(D). Note
that the components of a degenerate divisor can be either f -exceptional or
of insufficient fiber type with respect to f .

Lemma 1.1.11. Let f : X → Y be a surjective projective morphism of normal
quasi-projective varieties. Suppose that D is an effective f -vertical Q-Cartier
divisor such that f∗OX(xkDy)∗∗ � OY for every positive integer k. Then D is
f -degenerate.

Proof. If D were not f -degenerate, there would be an effective f -exceptional
divisor E on X and an effectiveQ-divisor T on Y such that f ∗T ≤ D+E. But
since E is f -exceptional it is still true that f∗OX(xk(D+ E)y)∗∗ � OY, yielding
a contradiction. �

1.2 Kodaira dimesnsions and numerical Kodaira
dimesions

Definition 1.2.1 (Classical Iitaka dimension, cf. [Nak, II, 3.2, Definition]).
Let X be a normal projective variety and D an R-Cartier divisor on X. If
|xmDy| , ∅, we put a dominant rational map

ϕ|xmDy| : XdWm,

with respect to the complete linear system of xmDy. We define the Classical
Iitaka dimension κ(D) of D as the following:

κ(D) = max{dimWm}
if H0(X, xmDy) , 0 for some positive integer m or κ(D) = −∞ otherwise.
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Lemma 1.2.2. Let Y be a normal projective variety, φ : Y → X a projective
birational morphism onto a normal projective variety, and let D be an R-Cartier
divisor on X. Then it holds the following:

(1) κ(φ∗D) = κ(φ∗D + E) for any φ-exceptional effective R-divisor E, and

(2) κ(φ∗D) = κ(D).

Proof. (1) and (2) follows from [Nak, II, 3.11, Lemma].
�

The following is remarked by Shokurov:

Remark 1.2.3. In general, κ(D) may not coincide with κ(D′) if D ∼R D′. For
example, let X be the P1, P and Q closed points in X such that P , Q and
a irrational number. Set D = a(P −Q). Then κ(D) = −∞ in spite of the fact
that D ∼R 0.

However, fortunately, κ(D) coincides with κ(D′) if D and D′ are effec-
tive divisors such that D ∼R D′ ([Ch, Corollary 2.1.4]). Hence it seems
reasonable that we define the following as the Iitaka (Kodaira) dimension
forR-divisors, which are introduced by Choi and Shokurov [Ch, Definition
2.2.1], [CS, Section 7].

Definition 1.2.4 (Invariant Iitaka dimension). Let X be a normal projective
variety and D an R-Cartier divisor on X. We define the invariant Iitaka
dimension κ(D) of D as the following:

K(D) = κ(D′)

if there exists an effective divisor D′ such that D ∼R D′ or K(D) = −∞
otherwise. Let (X,∆) be a log canonical. Then we call K(KX + ∆) the log
Kodaira dimension of (X,∆).

Definition 1.2.5 (Numerical Iitaka dimension). Let X be a normal projective
variety, D an R-Cartier divisor and A an ample Cartier divisor on X. We
set

σ(D,A) = max{k ∈ Z≥0| lim sup
m→∞

m−kdimH0(X, xmDy + A) > 0}

if H0(X, xmDy + A) , 0 for infinitely many m ∈ N and σ(D,A) = −∞
otherwise. We define

ν(D) = max{σ(D,A)|A is a ample divisor on Y}.

5



Note that this maximum will be computed by some sufficiently ample
divisor A. Let (X,∆) be a log pair. Then we call ν(KX + ∆) the numerical log
Kodaira dimension of (X,∆). If ∆ = 0, we simply say ν(KX) is the numerical
Kodaira dimension of X.

Lemma 1.2.6. Let Y be a normal projective variety, φ : Y → X a projective
birational morphism onto a normal projective variety, and let D be an R-Cartier
divisor on X. Then it holds the following:

(1) ν(φ∗D) = ν(φ∗D + E) for any φ-exceptional effective R-divisor E,

(2) ν(φ∗D) = ν(D), and

(3) ν(D) = max{k ∈ Z≥0|Dk . 0} when D is nef.

Proof. See [Nak, V, 2.7, Proposition]. �

Lemma 1.2.7 ([Nak, V, 2.7, Proposition, (1)]). Let X be a projective variety and
D and D′ R-Cartier divisors on X such that D ≡ D′. Then ν(D) = ν(D′).

Remark 1.2.8. ν(D) is denoted asκσ(D) in [Nak, V,§2]. Moreover Nakayama
also defined κ−σ (D), κ+σ (D) and κν(D) as some numerical Iitaka dimensions.
In this article we mainly treat in the case where ν(D) = 0, i.e. κσ(D) = 0.
Then it holds that κ−σ (D) = κ+σ (D) = κν(D) = 0 (cf. [Nak, V, 2.7, Proposition
(8)]). Moreover, if a log canonical pair (X,∆) has a weakly log canonical model
in the sense of Shokurov, then ν(KX + ∆) coincides with the numerical log
Kodaira dimension in the sense of Shokurov by Lemma 1.2.6 (cf. [Sh2, 2.4,
Proposition]).

1.3 Log minimal model program with scaling

In this section, we review a log minimal model program with scaling and
introduce works by Birkar–Cascini–Hacon–McKernan.

Lemma 1.3.1 (cf. [B1, Lemma 2.1] and [F12, Theorem 18.9]). Let π : X→ S
be a projective morphism of normal quasi-projective varieties and (X,∆) a Q-
factorial projective log canonical pair such that ∆ is a K-divisor. Let H be an
effectiveK-divisor such that KX +∆+H is π-nef and (X,∆+H) is log canonical.
Suppose that KX + ∆ is not π-nef. We put

λ = inf{α ∈ R≥0|KX + ∆ + αH is π-nef}.

Then λ ∈ K>0 and there exists an extremal ray R ⊆ NE(X/S) such that
(KX + ∆).R < 0 and (KX + ∆ + λH).R = 0.
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Definition 1.3.2 (Log minimal model program with scaling). Letπ : X→ S
be a projective morphism of normal quasi-projective varieties and (X,∆) a
Q-factorial projective divisorial log terminal pair such that∆ is aK-divisor.
Let H be an effectiveK-divisor such that KX +∆+H is π-nef and (X,∆+H)
is divisorial log terminal. We put

λ1 = inf{α ∈ R≥0|KX + ∆ + αH is π-nef}.
If KX+∆ is not π-nef, then λ1 > 0. By Lemma 1.3.1, there exists an extremal
ray R1 ⊆ NE(X/S) such that (KX +∆).R1 < 0 and (KX +∆+ λ1H).R1 = 0. We
consider an extremal contraction with respect to this R1. If it is a divisorial
contraction or a flipping contraction, let

(X,∆)d (X1,∆1)

be the divisorial contraction or its flip. Since KX1 + ∆1 + λ1H1 is π-nef, we
put

λ2 = inf{α ∈ R≥0|KX1 + ∆1 + αH1 is π-nef},
where H1 is the strict transform of H on X1. Then we find an extremal ray
R2 by the same way as the above. We may repeat the process. We call this
program a log minimal model program with scaling of H over S. When this
program runs as the following:

(X0,∆0) = (X,∆)d (X1,∆1)d · · ·d (Xi,∆i) · · · ,
then

λ1 ≥ λ2 ≥ λ3 . . . ,

where λi = inf{α ∈ R≥0|KXi−1 + ∆i−1 + αHi−1 is π-nef} and Hi−1 is the strict
transform of H on Xi−1.

The following theorems are slight generalizations of [BCHM, Corollary
1.4.1] and [BCHM, Corollary 1.4.2]. These seem to be well-known for the
experts.

Theorem 1.3.3 (cf. [BCHM, Corollary 1.4.1]). Let π : X → S be a projective
morphism of normal quasi-projective varieties and (X,∆) be aQ-factorial projective
divisorial log terminal pair such that ∆ is an R-divisor. Suppose that φ : X→ Y
is a flipping contraction of (X,∆). Then there exists the log flip of φ.

Proof. Since −(KX + ∆) is φ-ample, so is −(KX + ∆ − ϵx∆y) for a sufficiently
small ϵ > 0. Because ρ(X/Y) = 1, it holds that KX +∆ ∼R,Y c(KX +∆− ϵx∆y)
for some positive number c. By [BCHM, Corollary 1.4.1], there exists the
log flip of (X,∆ − ϵx∆y). This log flip is also the log flip of (X,∆) since
KX + ∆ ∼R,Y c(KX + ∆ − ϵx∆y).

�
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Theorem 1.3.4 (cf. [BCHM, Corollary 1.4.2]). Let π : X → S be a projective
morphism of normal quasi-projective varieties and (X,∆) be aQ-factorial projective
divisorial log terminal pair such that ∆ is an R-divisor. Suppose that there exists
a π-ample R-divisor A on X such that ∆ ≥ A. Then any log minimal model
programs with scaling of H starting from (X,∆) with scaling of H over S terminate,
where H satisfies that (X,∆ + H) is divisorial log terminal and KX + ∆ + H is
π-nef.

The above theorem is proved by the same argument as the proof of
[BCHM, Corollary1.4.2] because [BCHM, Theorem E] holds on the above
setting.

Theorem 1.3.5 (cf. [BCHM, Corollary 1.4.2]). Let π : X → S be a projective
morphism of normal quasi-projective varieties and (X,∆) be aQ-factorial projective
divisorial log terminal pair such that ∆ is an R-divisor. Suppose that there exists
an π-ample effective R-divisor H on X such that (X,∆ + H) is divisorial log
terminal and KX + ∆ + H is π-nef. If KX + ∆ is not a π-pseudo-effective divisor
then any minimal model programs starting from (X,∆) with scaling of H over S
terminate. Thus we get a Mori fiber space of (X,∆).

1.4 Divisorial Zariski decomposition

In this section, we introduce the divisorial Zariski decomposition for a pseudo-
effective divisor.

Definition 1.4.1 (cf. [Nak, III, 1.13, Definition] and [Ka3]). Let π : X → S
be a projective morphism of normal quasi-projective varieties and D an
R-Cartier divisor. We call that D is a limit of movable R-divisors over S if
[D] ∈ Mov(X/S) ⊆ N1(X/S) where Mov(X/S) is the closure of the convex
cone spanned by classes of fixed part freeZ-Cartier divisors over S. When
S = SpecC, we denote simply Mov(X).

Definition 1.4.2 (cf. [Nak, III, 1.6, Definition and 1.12, Definition]). Let X
be a smooth projective variety and B an R-big divisor. We define

σΓ(B) = inf{multΓB′|B ≡ B′ ≥ 0}

for a prime divisor Γ. Let D be a pseudo-effective divisor. Then we define
the following:

σΓ(D) = lim
ϵ→0+

σΓ(D + ϵA)

8



for some ample divisor A. We remark that σΓ(D) is independent of the
choice of A. Moreover the above two definitions coincide for a big divisor
because a function σΓ(·) on Big(X) is continuous where Big(X) := {[B] ∈
N1(X)|B is big} (cf. [Nak, III, 1.7, Lemma]). We set

N(D) =
∑

Γ:prime divisor

σΓ(D)Γ and P(D) = D −N(D).

We remark that N(D) is a finite sum. We call the decomposition D ≡
P(D)+N(D) the divisorial Zariski decomposition of D. We say that P(D) (resp.
N(D)) is the positive part (resp. negative part) of D.

Remark that the decomposition D ≡ P(D)+N(D) is called several names:
the sectional decomposition ([Ka3]), the σ-decomposition ([Nak]), the divisorial
Zariski decomposition ([Bo]), and the numerical Zariski decomposition ([Ka9]).

Proposition 1.4.3. Let X be a smooth projective variety and D a pseudo-effective
R-divisor on X. Then it holds the following:

(1) σΓ(D) = limϵ→0+ σΓ(D + ϵE) for a pseudo-effective divisor E, and

(2) ν(D) = 0 if and only if D ≡ N(D).

Proof. (1) follows from [Nak, III, 1.4, Lemma]. (2) follows from [Nak, V,
2.7, Proposition (8)]. �

The basic properties of the σ-decomposition are:

Lemma 1.4.4 ([Nak, III.1.4 Lemma] and [Nak, V.1.3 Lemma]). Let X be a
smooth projective variety and D a pseudo-effective R-Cartier divisor. Then

(1) κ(X,D) = κ(X,Pσ(D)) and

(2) Supp(Nσ(D)) ⊂ B−(D).

Remark 1.4.5. By the results of [Leh2], this definition coincides with the
notions of κν(L) from [Nak, V, 2.20, Definition] and ν(L) from [BDPP, 3.6,
Definition].

The numerical dimension satisfies a number of natural properties.

Lemma 1.4.6 ([Leh2, 6.7]). Let X be a normal variety, D an R-Cartier divisor
on X. If X is smooth then ν(D) = ν(Pσ(D)).

Degenerate divisors behave well with respect to the σ-decomposition.
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Lemma 1.4.7 (cf. [Ft1, (1.9)], [Nak, III.5.7 Proposition]). Let f : X → Y be a
surjective projective morphism from a smooth quasi-projective variety to a normal
quasi-projective variety and let D be an effective f -degenerate divisor. For any
pseudo-effective divisor L on Y we have D ≤ Nσ( f ∗L +D/Y).

Proof. [Nak, III.5.1 Proposition] and [Nak, III.5.2 Proposition] together
show that for a degenerate divisor D there is some component Γ ⊂ Supp(D)
such that D|Γ is not f |Γ-pseudo-effective. Since Pσ( f ∗L + D/Y)|Γ is pseudo-
effective, we see thatΓmust occur in Nσ( f ∗L+D/Y) with positive coefficient.

Set D′ to be the coefficient-wise minimum

D′ = min{Nσ( f ∗L +D/Y),D}.

If D′ < D, then D−D′ is still f -degenerate. Thus, there is some component
of D−D′ contained in Supp(Nσ( f ∗L+ (D−D′)/Y)) with positive coefficient,
a contradiction. �

Corollary 1.4.8 ([Lai, Lemma 2.10]). Let f : X → Y be a surjective projective
morphism of normal quasi-projective varieties and D an f -degenerate divisor.
Suppose that L is a pseudo-effective divisor on Y. Then there are codimension 1
components of B−( f ∗L +D/Y).
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2
Minimal model theory of numerical

Kodaira dimension zero

2.1 Introduction

The minimal model conjecture for smooth varieties is the following:

Conjecture 2.1.1 (Minimal model conjecture). Let X be a smooth projective
variety. Then there exists a minimal model or a Mori fiber space of X.

This conjecture is true in dimension 3 and 4 by Kawamata, Kollár,
Mori, Shokurov and Reid (cf. [KaMaMa], [KoMo] and [Sh3]). In the case
where KX is numerically equivalent to some effective divisor in dimension
5, this conjecture is proved by Birkar (cf. [B1]). When X is of general
type or KX is not pseudo-effective, Birkar, Cascini, Hacon and McKernan
prove Conjecture 2.1.1 for arbitrary dimension ([BCHM]). Moreover if X
has maximal Albanese dimension, Conjecture 2.1.1 is true by [F16]. In
this chapter, among other things, we consider Conjecture 2.1.1 in the case
where ν(KX) = 0 (for the definition of ν, see Definition 1.2.5):

Theorem 2.1.2. Let (X,∆) be a projective Q-factorial dlt pair such that ν(KX +
∆) = 0. Then there exists a minimal model (Xm,∆m) of (X,∆).

Actually the author heared from Vladimir Lazić that Theorem 2.1.2 for
klt pairs has been proved by by Druel (cf. [D] ) after he finished this work.
In this chapter, moreover, we give the generalization of his result for dlt
pairs by using the sophisticated Birkar–Cascini–Hacon–McKernan’s results
and Druel’s method. Essentially our method seems to be same as Druel’s.
However, by expanding this result to dlt pairs we give the different proof
of the abundance theorem for log canonical pairs in the case where ν = 0
from [CKP] and [Ka9]:
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Theorem 2.1.3 (=Theorem 2.3.3). Let X be a normal projective variety and
∆ an effective Q-divisor. Suppose that (X,∆) is a log canonial pair such that
ν(KX + ∆) = 0. Then KX + ∆ is abundant, i.e. ν(KX + ∆) = κ(KX + ∆).

First, Nakayama proved Theorem 2.1.3 when (X,∆) is klt. Nakayama’s
proof is independent of Simpson’s results [Sim]. Simpson’s results are used
to approach the abundance conjecture in [CPT]. Campana–Perternell–
Toma prove Theorem 2.1.3 when X is smooth and ∆ = 0. Siu also gave
an analytic proof of it (cf. [Siu]). The results of [CKP], [Ka9] and [Siu]
depend on [Sim] and [Bu]. In this chapter, we show Theorem 2.1.3 by
using a method different from [CPT], [CKP], [Ka9] and [Siu]. In our proof
of Theorem 2.1.3, we do not need results of [Sim] and [Bu]. Our proof
depends on [BCHM] and [G2].

2.2 Existence of minimal model in the case ν = 0

Theorem 2.2.1 (cf. [D, Corollaire 3.4]). Let X be aQ-factorial projective variety
and ∆ an effective R-divisor such that (X,∆) is divisorial log terminal. Suppose
that ν(KX + ∆) = 0. Then any log minimal model programs starting from (X,∆)
with scaling of H terminate, where H satisfies that H ≥ A for some effective
Q-ample divisor A and (X,∆ + H) is divisorial log terminal and KX + ∆ + H is
nef.

Proof. Let (X,∆)d (X1,∆1) be a divisorial contraction or a log flip. Remark
that it holds that

ν(KX + ∆) = ν(KX1 + ∆1)

from Lemma 1.2.6 (1) and the negativity lemma. Now we run a log minimal
model program

(Xi,∆i)d (Xi+1,∆i+1)

starting from (X0,∆0) = (X,∆) with scaling of H. Assume by contradiction
that this program does not terminate. Let {λi} be as in Definition 1.3.2. We
set

λ = lim
i→∞

λi.

If λ , 0, the sequence is composed by (KX + ∆ +
1
2λH)-log minimal model

program. Thus the sequence terminates by Theorem 1.3.4. Therefore we
see that λ = 0. Now there exists j such that (Xi,∆i) d (Xi+1,∆i+1) is a log
flip for any i ≥ j. Replace (X,∆) by (X j,∆ j), we lose the fact that A is ample.
Then we see the following:

Claim 2.2.2. KX + ∆ is a limit of movable R-divisors.
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Proof of Claim 2.2.2. See [B2, Step 2 of the proof of Theorem 1.5] or [F10,
Theorem 2.3]. �

Let φ : Y → X be a log resolution of (X,∆). We consider the divisorial
Zariski decomposition

φ∗(KX + ∆) = P(φ∗(KX + ∆)) +N(φ∗(KX + ∆))

(Definition 1.4.2). Since

ν(φ∗(KX + ∆)) = ν(KX + ∆) = 0,

we see P(φ∗(KX + ∆)) ≡ 0 by Proposition 1.4.3 (2). Moreover we see the
following claim:

Claim 2.2.3. N(φ∗(KX + ∆)) is a φ-exceptional divisor.

Proof of Claim 2.2.3. Let G be an ample divisor on X and ϵ a sufficiently
small positive number. By Proposition 1.4.3 (1), it holds that

Supp N(φ∗(KX + ∆)) ⊆ Supp N(φ∗(KX + ∆ + ϵG)).

If it holds that φ∗(N(φ∗(KX + ∆))) , 0, we see that B≡(KX + ∆ + ϵG) has
codimension 1 components. This is a contradiction to Claim 2.2.2. Thus
N(φ∗(KX + ∆)) is a φ-exceptional divisor. �

Hence KX +∆ ≡ 0, in particular, KX +∆ is nef. This is a contradiction to
the assumption. �

Corollary 2.2.4. Let X be a Q-factorial projective variety and ∆ an effective R-
divisor such that (X,∆) is divisorial log terminal. Suppose that ν(KX + ∆) = 0.
Then there exists a log minimal model of (X,∆).

Remark 2.2.5. These results are on the absolute setting. It may be difficult
to extends these to the relative settings. See [F10], recent preprints [B3],
[HX].

2.3 Abundance theorem in the case ν = 0

In this section, we prove the abundance theorem in the case where ν = 0
for an R-divisor:
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2.3.1 Klt pairs with nef log canonial divisor

In this subsection, we introduce the abundance theorem for klt pairs with
nef log canonial divisor of numerical Kodaira dimension zero.

Ambro and Nakayama prove the abundance theorem for klt pairs
whose log canonical divisors are numerically trivial, i.e.,

Theorem 2.3.1 (cf. [Am5, Theorem 4.2], [Nak, V, 4.9. Corollary]). Let (X,∆)
be a projective klt pair such that ∆ is aQ-divisor. Suppose that KX +∆ ≡ 0. Then
KX + ∆ ∼Q 0.

Remark that Nakayama proved the abundance conjecture when KX+∆
is pseudo-effective without MMP. In Subsection 2.3.3, we also generalize
the result for pseudo-effective log canonical divisors with MMP.

2.3.2 Lc pairs with nef log canonial divisor

Theorem 2.3.2 (cf. [FG2, Theorem 3.1], [G2, Theorem 1.2]). Let (X,∆) be a
projective log canonical pair such that ∆ is aK-divisor. Suppose that KX +∆ ≡ 0.
Then KX + ∆ ∼K 0.

Proof. By taking a dlt blow-up (Theorem 1.1.6), we also may assume that
(X,∆) is a Q-factorial dlt pair. Now, we assume that K = R. Let

∑
i Bi be

the irreducible decomposition of Supp∆. We put V =
⊕

i
RBi. Then it is

well known that

L = {B ∈ V | (X,B) is log canonical}

is a rational polytope in V. We can also check that

N = {B ∈ L |KX + B is nef}

is a rational polytope and ∆ ∈ N (cf. [B2, Proposition 3.2] and [Sh2, 6.2
First Main theorem]). We note that N is known as Shokurov’s polytope.
Therefore, we can write

KX + ∆ =

k∑
i=1

ri(KX + ∆i)

such that

(i) ∆i is an effective Q-divisor such that ∆i ∈ N for every i,

(ii) (X,∆i) is log canonical for every i, and
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(iii) 0 < ri < 1, ri ∈ R for every i, and
∑k

i=1 ri = 1.

Since KX + ∆ is numerically trivial and KX + ∆i is nef for every i, KX + ∆i is
numerically trivial for every i.Thus we may assume thatK = Q. Moreover,
by Theorem 2.3.1, we may assume that x∆y , 0. We set

S = ϵx∆y and Γ = ∆ − S

for some sufficiently small positive number ϵ. Then (X,Γ) is klt, KX+Γ ≡ −S
is not pseudo-effective. By Theorem 1.3.5, there exist a composition of
(KX + Γ)-log flips and (KX + Γ)-divisorial contractions

ψ : Xd X′,

and a Mori fiber space
f ′ : X′ → Y′

for (X,Γ). It holds that KX′ +∆
′ ≡ 0, where ∆′ is the strict transform of ∆ on

X′. By the negativity lemma, it suffices to show that KX′ +∆
′ ∼Q 0. We put

S′ = ψ∗S and Γ′ = ψ∗Γ. Since (S′.C) > 0 for any f ′-contracting curve C, we
conclude that S′ , 0 and the support of S′ dominates Y′. Since KX′ +∆

′ ≡ 0
and f ′ is a (KX′ + Γ

′)-extremal contraction, there exists a Q-Cartier divisor
D′ on Y′ such that KX′ + ∆

′ ∼Q f ′∗D′ and D′ ≡ 0 (cf. [KaMaMa, Lemma
3-2-5]). We remark that (X′,∆′) is not necessarily dlt, but it is a Q-factorial
log canonical pair. Hence we can take a dlt blow-up

φ : (X′′,∆′′)→ (X′,∆′)

of (X′,∆′). Since the support of S′ dominates Y′, there exists an lc center
C′′ of (X′′,∆′′) such that C′′ dominates Y′. Then we see that

KC′′ + ∆
′′

C′′ ∼Q ( f ′′C′′)
∗D′,

where (KX′′ +∆
′′)|C′′ = KC′′ +∆

′′
C′′ and f ′′C′′ = f ′ ◦φ|C′′ . From induction on the

dimension of X, it holds that KC′′ + ∆
′′

C′′ ∼Q 0. In particular, we conclude
that D′ ∼Q 0. Thus we see that

KX′ + ∆
′ ∼Q 0.

We finish the proof of Theorem 2.3.2. �
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2.3.3 Lc pairs

Theorem 2.3.3. Let X be a normal projective variety and ∆ an effective R-
divisor. Suppose that (X,∆) is a log canonical pair such that ν(KX + ∆) = 0.
Then ν(KX + ∆) = K(KX + ∆). Moreover, if ∆ is a Q-divisor, then ν(KX + ∆) =
κ(KX + ∆) = K(KX + ∆).

Proof. By taking a dlt blow-up (Theorem 1.1.6), we may assume that (X,∆)
is aQ-factorial dlt pair. By Corollary 2.2.4, there exists a log minimal model
(Xm,∆m) of (X,∆). From Lemma 1.2.6 (3), it holds that KXm + ∆m ≡ 0. By
Theorem 2.3.2, it holds that K(KXm + ∆m) = 0. Lemma 1.2.2 implies that
K(KX +∆) = 0. If ∆ is a Q-divisor, then there exists an effective Q-divisor E
such that KX + ∆ ∼Q E by Corollary 2.2.4 and Theorem 2.3.2. Thus we see
that κ(KX + ∆) = K(KX + ∆). We finish the proof of Theorem 2.3.3. �

Corollary 2.3.4. Let π : X → S be a projective surjective morphism of normal
quasi-projective varieties, and let (X,∆) be a projective log canonical pair such
that ∆ is an effectiveK-divisor. Suppose that ν(KF +∆F) = 0 for a general fiber F,
where KF +∆F = (KX +∆)|F. Then there exists an effectiveK-divisor D such that
KX + ∆ ∼K,π D.

Proof. This follows from Theorem 2.3.3 and [BCHM, Lemma 3.2.1]. �
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3
Canonical bundle formulae and

subadjunctions

3.1 Introduction

The following lemma is one of the main results of this chapter, which is
missing in the literature. It is a canonical bundle formula for generically
finite proper surjective morphisms.

Lemma 3.1.1 (Main Lemma). Let X and Y be normal varieties and let f : X→ Y
be a generically finite proper surjective morphism. Let K be the rational number
fieldQ or the real number fieldR. Suppose that there exists an effectiveK-divisor
∆ on X such that (X,∆) is log canonical and that KX+∆ ∼K, f 0. Then there exists
an effectiveK-divisor Γ on Y such that (Y,Γ) is log canonical and that

KX + ∆ ∼K f ∗(KY + Γ).

Moreover, if (X,∆) is kawamata log terminal, then we can choose Γ such that (Y,Γ)
is kawamata log terminal.

As an application of Lemma 3.1.1, we prove a subadjunction formula
for minimal lc centers. It is a generalization of Kawamata’s subadjunction
formula (cf. [Ka8, Theorem 1]). For a local version, see Theorem 3.6.2
below.

Theorem 3.1.2 (Subadjunction formula for minimal lc centers). LetK be the
rational number field Q or the real number field R. Let X be a normal projective
variety and let D be an effectiveK-divisor on X such that (X,D) is log canonical.
Let W be a minimal log canonical center with respect to (X,D). Then there exists
an effectiveK-divisor DW on W such that

(KX +D)|W ∼K KW +DW
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and that the pair (W,DW) is kawamata log terminal. In particular, W has only
rational singularities.

We summarize the contents of this chapter. Section 3.2 is devoted to
the proof of Lemma 3.1.1. In Section 3.3, we discuss Ambro’s canonical
bundle formula for projective kawamata log terminal pairs with a gener-
alization for R-divisors (cf. Theorem 3.3.1). It is one of the key ingredients
of the proof of Theorem 3.1.2. Although Theorem 3.3.1 is sufficient for
applications in the subsequent sections, we treat slight generalizations of
Ambro’s canonical bundle formula for projective log canonical pairs. In
Section 3.4, we prove a subadjunction formula for minimal log canonical
centers (cf. Theorem 3.1.2), which is a generalization of Kawamata’s sub-
adjunction formula (cf. [Ka8, Theorem 1]). In Section 3.5, we give a quick
proof of the non-vanishing theorem for log canonical pairs as an applica-
tion of Theorem 3.1.2, which is the main theorem of [F11]. In Section 3.6,
we prove a local version of our subadjunction formula for minimal log
canonical centers (cf. Theorem 3.6.2). It is useful for local studies of singu-
larities of pairs. This local version does not directly follow from the global
version: Theorem 3.1.2. It is because we do not know how to compactify
log canonical pairs.

3.2 Main lemma

In this section, we prove Lemma 3.1.1.

Proof of Lemma 3.1.1. Let

f : X
g−−−−→ Z h−−−−→ Y

be the Stein factorization. By replacing (X,∆) with (Z, g∗∆), we can assume
that f : X → Y is finite. Let D be a K-Cartier K-divisor on Y such that
KX + ∆ ∼K f ∗D. We consider the following commutative diagram:

X′ ν //

f ′

��

X
f
��

Y′ µ
// Y,

where

(i) µ is a resolution of singularities of Y,
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(ii) there exists an open set U ⊆ Y such that µ is isomorphic over U and
f is étale over U. Moreover, µ−1(Y−U) has a simple normal crossing
support and Y −U contains Supp f∗∆, and

(iii) X′ is the normalization of the irreducible component of X×Y Y′ which
dominates Y′. In particular, f ′ is finite.

Let Ω =
∑

i δiDi be aK-divisor on X′ such that

KX′ +Ω = ν
∗(KX + ∆).

We consider the ramification formula:

KX′ = f ′∗KY′ + R,

where R =
∑

i(ri−1)Di is an effectiveZ-divisor such that ri is the ramification
index of Di for every i. Note that it suffices to show the above formula
outside codimension two closed subsets of X′. Then it holds that

(µ ◦ f ′)∗D ∼K f ′∗KY′ + R +Ω.

By pushing forward the above formula by f ′, we see

deg f ′ · µ∗D ∼K deg f ′ · KY′ + f ′∗ (R +Ω).

We set
Γ :=

1
deg f ′

µ∗ f ′∗ (R +Ω)

on Y. Then Γ is effective since

µ∗ f ′∗ (R +Ω) = f∗ν∗(R +Ω) = f∗(ν∗R + ∆).

Let Y′ \ µ−1U =
∪

j E j be the irreducible decomposition, where
∑

j E j is a
simple normal crossing divisor. We set

I j := {i| f ′(Di) = E j}.
The coefficient of E j in f ′∗ (R +Ω) is∑

i∈I j
(ri + δi − 1)deg( f ′|Di)

deg f ′
.

Since δi ≤ 1, it holds that∑
i∈I j

(ri + δi − 1)deg( f ′|Di) ≤
∑
i∈I j

rideg( f ′|Di) = deg f ′.

Thus (Y,Γ) is log canonical since KY′ + f ′∗ (R +Ω) = µ∗(KY + Γ). Moreover, if
(X,∆) is kawamata log terminal, then δi < 1. Hence (Y,Γ) is kawamata log
terminal. �
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3.3 Ambro’s canonical bundle formula

Theorem 3.3.1 is Ambro’s canonical bundle formula for projective klt pairs
(cf. [Am5, Theorem 4.1]) with a generalization for R-divisors. We need it
for the proof of our subadjunction formula: Theorem 3.1.2.

Theorem 3.3.1 (Ambro’s canonical bundle formula for projective klt pairs).
Let K be the rational number field Q or the real number field R. Let (X,B) be a
projective kawamata log terminal pair and let f : X→ Y be a projective surjective
morphism onto a normal projective variety Y with connected fibers. Assume that

KX + B ∼K, f 0.

Then there exists an effectiveK-divisor BY on Y such that (Y,BY) is klt and

KX + B ∼K f ∗(KY + BY).

Proof. If K = Q, then the statement is nothing but [Am5, Theorem 4.1].
From now on, we assume that K = R. Let

∑
i Bi be the irreducible decom-

position of SuppB. We put V =
⊕

i
RBi. Then it is well known that

L = {∆ ∈ V | (X,∆) is log canonical}

is a rational polytope in V. We can also check that

N = {∆ ∈ L |KX + ∆ is f -nef}

is a rational polytope (cf. [B2, Proposition 3.2. (3)]) and B ∈ N . We note that
N is known as Shokurov’s polytope. We also note that the proof of [B2,
Proposition 3.2. (3)] works for our setting without any changes by [F12,
Theorem 18.2]. Therefore, we can write

KX + B =
k∑

i=1

ri(KX + ∆i)

such that

(i) ∆i ∈ N is an effective Q-divisor on X for every i,

(ii) (X,∆i) is klt for every i, and

(iii) 0 < ri < 1, ri ∈ R for every i, and
∑k

i=1 ri = 1.
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Since KX +B is numerically f -trivial and KX +∆i is f -nef for every i, KX +∆i

is numerically f -trivial for every i. Thus,

κ(Xη, (KX + ∆i)η) = ν(Xη, (KX + ∆i)η) = 0

for every i, where η is the generic point of Y, by Nakayama (cf. [Nak,
Chapter V 2.9. Corollary]). See also [Am5, Theorem 4.2]. Therefore, KX +
∆i ∼Q, f 0 for every i by [F7, Theorem 1.1]. By the case whenK = Q, we can
find an effective Q-divisor Θi on Y such that (Y,Θi) is klt and

KX + ∆i ∼Q f ∗(KY + Θi)

for every i. By putting BY =
∑k

i=1 riΘi, we obtain

KX + B ∼R f ∗(KY + BY),

and (Y,BY) is klt. �

Corollary 3.3.2 is a direct consequence of Theorem 3.3.1.

Corollary 3.3.2. Let K be the rational number field Q or the real number field
R. Let (X,B) be a log canonical pair and let f : X → Y be a projective surjective
morphism between normal projective varieties. Assume that

KX + B ∼K, f 0

and that every lc center of (X,B) is dominant onto Y. Then we can find an effective
K-divisor BY on Y such that (Y,BY) is kawamata log terminal and that

KX + B ∼K f ∗(KY + BY).

Proof. By taking a dlt blow-up (cf. Theorem 1.1.6), we can assume that
(X,B) is dlt. By replacing (X,B) with its minimal lc center and taking the
Stein factorization, we can assume that (X,B) is klt and that f has connected
fibers (cf. Lemma 3.1.1). Therefore, we can take a desired BY by Theorem
3.3.1. �

From now on, we treat Ambro’s canonical bundle formula for projective
log canonical pairs. We note that Theorem 3.3.1 is sufficient for applications
in subsequent sections.

3.3.3 (Observation). Let (X,B) be a log canonical pair and let f : X→ Y be
a projective surjective morphism between normal projective varieties with
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connected fibers. Assume that KX + B ∼Q, f 0 and that (X,B) is kawamata
log terminal over the generic point of Y. We can write

KX + B ∼Q f ∗(KY +MY + ∆Y)

where MY is the moduli Q-divisor and ∆Y is the discriminant Q-divisor. For
details, see, for example, [Am4]. It is conjectured that we can construct a
commutative diagram

X′ ν //

f ′

��

X
f
��

Y′ µ
// Y,

with the following properties.

(i) ν and µ are projective birational.

(ii) X′ is normal and KX′ + BX′ = ν∗(KX + B).

(iii) KX′ + BX′ ∼Q f ′∗(KY′ +MY′ + ∆Y′) such that Y′ is smooth, the moduli
Q-divisor MY′ is semi-ample, and the discriminant Q-divisor ∆Y′ has
a simple normal crossing support.

In the above properties, the non-trivial part is the semi-ampleness of MY′ .
We know that we can construct the desired commutative diagrams of
f ′ : X′ → Y′ and f : X→ Y when

(1) dim X − dim Y = 1 (cf. [Ka7, Theorem 5] and so on),

(2) dim Y = 1 (cf. [Am4, Theorem 0.1] and [Am5, Theorem 3.3]),

(3) general fibers of f are Abelian varieties or smooth surfaces with κ = 0
(cf. [F5, Theorem 1.2, Theorem 6.3]),

and so on. We take a general member D ∈ |mMY′ | of the free linear system
|mMY′ |where m is a sufficiently large and divisible integer. We put

KY + BY = µ∗(KY′ +
1
m

D + ∆Y′).

Then it is easy to see that

µ∗(KY + BY) = KY′ +
1
m

D + ∆Y′ ,

(Y,BY) is log canonical, and

KX + B ∼Q f ∗(KY + BY).

By the above observation, we have Ambro’s canonical bundle formula for
projective log canonical pairs under some special assumptions.
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Theorem 3.3.4. Let (X,B) be a projective log canonical pair and let f : X → Y
be a projective surjective morphism onto a normal projective variety Y such that
KX +B ∼Q, f 0. Assume that dim Y ≤ 1 or dim X−dim Y ≤ 1. Then there exists
an effective Q-divisor BY on Y such that (Y,BY) is log canonical and

KX + B ∼Q f ∗(KY + BY).

Proof. By taking a dlt blow-up (cf. Theorem 1.1.6), we can assume that
(X,B) is dlt. If necessary, by replacing (X,B) with a suitable lc center
of (X,B) and by taking the Stein factorization (cf. Lemma 3.1.1), we can
assume that f : X → Y has connected fibers and that (X,B) is kawamata
log terminal over the generic point of Y. We note that we can assume that
dim Y = 1 or dim X − dim Y = 1. By the arguments in 3.3.3, we can find
an effective Q-divisor BY on Y such that (Y,BY) is log canonical and that
KX + B ∼Q f ∗(KY + BY). �

3.4 Subadjunction for minimal log canonical cen-
ters

The following theorem is a generalization of Kawamata’s subadjunction
formula (cf. [Ka8, Theorem 1]). Theorem 3.4.1 is new even for threefolds.
It is an answer to Kawamata’s question (cf. [Ka7, Question 1.8]).

Theorem 3.4.1 (Subadjunction formula for minimal lc centers). LetK be the
rational number field Q or the real number field R. Let X be a normal projective
variety and let D be an effectiveK-divisor on X such that (X,D) is log canonical.
Let W be a minimal log canonical center with respect to (X,D). Then there exists
an effectiveK-divisor DW on W such that

(KX +D)|W ∼K KW +DW

and that the pair (W,DW) is kawamata log terminal. In particular, W has only
rational singularities.

Remark 3.4.2. In [Ka8, Theorem 1], Kawamata proved

(KX +D + εH)|W ∼Q KW +DW,

where H is an ample Cartier divisor on X and ε is a positive rational
number, under the extra assumption that D is a Q-divisor and there exists
an effective Q-divisor Do such that Do < D and that (X,Do) is kawamata
log terminal. Therefore, Kawamata’s theorem claims nothing when D = 0.
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Proof of Theorem 3.4.1. By taking a dlt blow-up (cf. Theorem 1.1.6), we can
take a projective birational morphism f : Y→ X from a normal projective
variety Y with the following properties.

(i) KY +DY = f ∗(KX +D).

(ii) (Y,DY) is a Q-factorial dlt pair.

We can take a minimal lc center Z of (Y,DY) such that f (Z) = W. We note
that KZ + DZ = (KY + DY)|Z is klt since Z is a minimal lc center of the dlt
pair (Y,DY). Let

f : Z
g−−−−→ V h−−−−→ W

be the Stein factorization of f : Z→W. By the construction, we can write

KZ +DZ ∼K f ∗A

where A is a K-divisor on W such that A ∼K (KX + D)|W. We note that W
is normal (cf. [F11, Theorem 2.4 (4)]). Since (Z,DZ) is klt, we can take an
effectiveK-divisor DV on V such that

KV +DV ∼K h∗A

and that (V,DV) is klt by Theorem 3.3.1. By Lemma 3.1.1, we can find an
effectiveK-divisor DW on W such that

KW +DW ∼K A ∼K (KX +D)|W

and that (W,DW) is klt. �

3.5 Non-vanishing theorem for log canonical pairs

The following theorem is the main result of [F11]. It is almost equivalent to
the base point free theorem for log canonical pairs. For details, see [F11].

Theorem 3.5.1 (Non-vanishing theorem). Let X be a normal projective variety
and let B be an effective Q-divisor on X such that (X,B) is log canonical. Let L be
a nef Cartier divisor on X. Assume that aL − (KX + B) is ample for some a > 0.
Then the base locus of the linear system |mL| contains no lc centers of (X,B) for
every m≫ 0, that is, there is a positive integer m0 such that Bs|mL|contains no lc
centers of (X,B) for every m ≥ m0.

Here, we give a quick proof of Theorem 3.5.1 by using Theorem 3.4.1.
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Proof. Let W be any minimal lc center of the pair (X,B). It is sufficient
to prove that W is not contained in Bs|mL| for m ≫ 0. By Theorem 3.4.1,
we can find an effective Q-divisor BW on W such that (W,BW) is klt and
KW +DW ∼Q (KX +B)|W. Therefore, aL|W − (KW +BW) ∼Q (aL− (KX +B))|W is
ample. By the Kawamata–Shokurov base point free theorem, |mL|W | is free
for m≫ 0. By [F11, Theorem 2.2],

H0(X,OX(mL))→ H0(W,OW(mL))

is surjective for m ≥ a. Therefore, W is not contained in Bs|mL| for m ≫
0. �

Remark 3.5.2. The above proof of Theorem 3.5.1 is shorter than the original
proof in [F11]. However, the proof of Theorem 3.4.1 depends on very deep
results such as the existence of dlt blow-ups. The proof of Theorem 3.5.1
in [F11] only depends on various well-prepared vanishing theorems and
standard techniques.

3.6 Subadjunction formula: local version

In this section, we give a local version of our subadjunction formula for
minimal log canonical centers. Theorem 3.6.1 is a local version of Ambro’s
canonical bundle formula for kawamata log terminal pairs: Theorem 3.3.1.
It is essentially [F1, Theorem 1.2].

Theorem 3.6.1. LetK be the rational number field Q or the real number field R.
Let (X,B) be a kawamata log terminal pair and let f : X→ Y be a proper surjective
morphism onto a normal affine variety Y with connected fibers. Assume that

KX + B ∼K, f 0.

Then there exists an effectiveK-divisor BY on Y such that (Y,BY) is klt and

KX + B ∼K f ∗(KY + BY).

We just explain how to modify the proof of [F1, Theorem 1.2].

Comments on the proof. First, we assume thatK = Q. In this case, the proof
of [F1, Theorem 1.2] works with some minor modifications. We note that
M in the proof of [F1, Theorem 1.2] is µ-nef. We also note that we can
assume H = 0 in [F1, Theorem 1.2] since Y is affine. Next, we assume that
K = R. In this case, we can reduce the problem to the case whenK = R as
in the proof of Theorem 3.3.1. So, we obtain the desired formula. �
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By Theorem 3.6.1, we can obtain a local version of Theorem 3.4.1. The
proof of Theorem 3.4.1 works without any modifications.

Theorem 3.6.2 (local version). LetK be the rational number field Q or the real
number field R. Let X be a normal affine variety and let D be an effective K-
divisor on X such that (X,D) is log canonical. Let W be a minimal log canonical
center with respect to (X,D). Then there exists an effective K-divisor DW on W
such that

(KX +D)|W ∼K KW +DW

and that the pair (W,DW) is kawamata log terminal. In particular, W has only
rational singularities.

Theorem 3.6.2 does not directly follow from Theorem 3.4.1. If we use a
log canonical closure (in recent preprint [HX]) we can extend Theorem 3.6.2
to any quasi projective situations.
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4
Reduction maps and minimal model

theory

4.1 Introduction

Suppose that X is a smooth projective variety over C. The minimal model
program predicts that there is a birational model of X that satisfies particu-
larly nice properties. More precisely, if X has non-negative Kodaira dimen-
sion then X should admit a good minimal model: a birational model X′

with mild singularities such that some multiple of KX′ is base point free. In
this paper we use reduction maps to study the existence of good minimal
models for pairs (X,∆).

We first interpret the existence of good minimal models in terms of
the numerical dimension of [Nak] and [BDPP]. Using results of [Lai], we
show that for a kawamata log terminal pair (X,∆) the existence of a good
minimal model is equivalent to the abundance of KX + ∆. Thus we will
focus on the following conjecture:

Conjecture 4.1.1. Let (X,∆) be a kawamata log terminal pair. Then KX + ∆ is
abundant, that is, κ(KX + ∆) = ν(KX + ∆).

Our main goal is to show that the abundance of KX +∆ can be detected
on the base of certain morphisms:

Theorem 4.1.2 (=Corollary 4.3.4). Let (X,∆) be a kawamata log terminal pair.
Suppose that f : X → Z is a morphism with connected fibers to a variety Z
such that ν((KX + ∆)|F) = 0 for a general fiber F of f . Then there exist a smooth
birational model Z′ of Z and a kawamata log terminal pair (Z′,∆Z′) such that
KX + ∆ is abundant if and only if KZ′ + ∆Z′ is abundant.
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In order to apply Theorem 4.1.2 in practice, the key question is whether
one can find a map such that the numerical dimension of (KX+∆)|F vanishes
for a general fiber F. The (KX + ∆)-trivial reduction map constructed in
[Leh1] satisfies precisely this property. We will consider a birational version
of this map better suited for the study of adjoint divisors; we then define
τ̃(X,∆) to be the dimension of the image of this birational version. Thus
we obtain the following:

Theorem 4.1.3 (Corollary of Theorem 4.5.1). Let (X,∆) be a kawamata log
terminal pair. If 0 ≤ τ̃(KX + ∆) ≤ 3 then (X,∆) has a good minimal model.

The (KX + ∆)-trivial reduction map is constructed by quotienting by
curves with (KX+∆) ·C = 0. Thus, another way to approach the problem is
to focus on the properties of curves on X. Recall that an irreducible curve
C is said to be movable if it is a member of a family of curves dominating
X. Conjecture 4.1.1 yields the following prediction:

Conjecture 4.1.4. Let (X,∆) be a kawamata log terminal pair. Suppose that
(KX + ∆).C > 0 for every movable curve C on X. Then KX + ∆ is big.

Our final goal is to show that the two conjectures are equivalent:

Theorem 4.1.5 (=Corollary 4.5.2). Conjecture 4.1.4 holds up to dimension n iff
Conjecture 4.1.1 holds up to dimension n.

The use of reduction maps to study the minimal model program was
initiated by [Am3]. Our work relies on Ambro’s techniques. Note that
our main theorem generalizes [Am3] and [Fk4]. Related topics have been
considered in [BDPP]. The method of using fibrations to study the abun-
dance conjecture seems to appear first in [Ka2]. Finally, similar ideas have
appeared independently in the recent preprint [Siu].

We summarize the contents of this chapter. In Section 4.2, we introduce
the definitions of some log smooth models for the proof of main results. In
Section 4.3, we prove Theorem 4.1.2 and show the equivalence of the abun-
dance conjecture and the existence of good minimal models. In Section 4.4,
we introduce the D-trivial reduction map of [Leh1] and define τ̃(X,∆) for a
log pair (X,∆). In Section 4.5, we show Theorem 4.1.3 and Theorem 4.1.5.

4.2 Log smooth models

In this section, we introduce the definition of some log smooth models for
the proof of main results.
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Definition 4.2.1. Let (X,∆) be a kawamata log terminal pair andφ : W → X
a log resolution of (X,∆). Choose ∆W so that

KW + ∆W = ϕ
∗(KX + ∆) + E

where∆W and E are effectiveQ-divisors that have no common component.
We call (W,∆W) a log smooth model of (X,∆). Note that a minimal model
of (W,∆W) may not be a minimal model of (X,∆). To correct this deficiency,
define

F =
∑

Fi:φ-exceptional

Fi and ∆ϵW = ∆W + ϵF

for a positive number ϵ. We call (W,∆ϵW) an ϵ-log smooth model.

Remark 4.2.2. Note that our definition of a log smooth model differs from
that of Birkar and Shokurov (cf. [B1] and [B2]).

4.3 The existence of minimal models and abun-
dance

In this section, we show that the abundance conjecture is equivalent to the
existence of good minimal models. We also prove Theorem 4.1.2, the main
technical tool for the inductive arguments of Section 4.5.

Lemma 4.3.1 ([Nak, V.4.2 Corollary]). Let (X,∆) be a kawamata log terminal
pair with κ(KX + ∆) ≥ 0. Then the following are equivalent:

1. κ(KX + ∆) = ν(KX + ∆).

2. Let µ : X′ → X be a birational morphism and f : X′ → Z′ a morphism
resolving the Iitaka fibration for KX + ∆. Then

ν(µ∗(KX + ∆)|F) = 0

for a general fiber F of f .

If either of these equivalent conditions hold, we say that L is abundant.

The following theorem is known to experts; for example, see [DHP,
Remark 2.6]. The main ideas of the proof are from [Lai].

Theorem 4.3.2 (cf. [DHP]). Let (X,∆) be a klt pair. Then KX + ∆ is abundant
if and only if (X,∆) has a good minimal model.
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Proof. First suppose that (X,∆) has a good minimal model (X′,∆′). Let Y be
a common resolution of X and X′ (with morphisms f and g respectively)
and write

f ∗(KX + ∆) = g∗(KX′ + ∆
′) + E

where E is an effective exceptional Q-divisor. Thus

Pσ( f ∗(KX + ∆)) = Pσ(g∗(KX′ + ∆
′))

and since the latter divisor is semi-ample, the abundance of KX+∆ follows.
Conversely, suppose that KX + ∆ is abundant. Let f : (X,∆)d Z be the

Iitaka fibration of KX + ∆. Choose an ϵ-log smooth model φ : (W,∆ϵW)→ X
with sufficiently small ϵ > 0 so that f is resolved on W. By [BCHM, Lemma
3.6.10] we can find a minimal model for (X,∆) by constructing a minimal
model of (W,∆ϵW) . Moreover we see that f ◦ φ is also the Iitaka fibration
of KW + ∆

ϵ
W and ν(KW + ∆

ϵ
W) = ν(KX + ∆). Replacing (X,∆) by (W,∆ϵW), we

may suppose that the Iitaka fibration f is a morphism on X.
By [Nak, V.4.2 Corollary], ν(KF + ∆F) = 0 where F is a general fiber of f

and KF + ∆F = (KX + ∆)|F. Therefore (F,∆F) has a good minimal model by
[D, Corollaire 3.4].

The arguments of [Lai, Theorem 4.4] for (X,∆) now show that (X,∆) has
a good minimal model. �

The following lemma is key for proving our main results. It is a conse-
quence of Ambro’s work on LC-trivial fibrations (cf. [Am5]).

Lemma 4.3.3. Let (X,∆) be a projective klt pair. Suppose that f : X → Z is a
projective morphism with connected fibers to a smooth projective variety Z such
that ν((KX + ∆)|F) = 0 for a general fiber. Then there exists a log resolution
µ : X′ → X of (X,∆), a klt pair (Z′,∆Z′), and a projective morphism f ′ : X′ → Z′

birationally equivalent to f such that

Pσ(µ∗(KX + ∆)) ∼Q Pσ( f ′∗(KZ′ + ∆Z′)).

We may assume that Z′ is any sufficiently high birational model of Z.

Proof. By [Nak, V.4.9 Corollary] κ((KX + ∆)|F) = 0. By [Am5, Theorem 3.3]
and [FM, 4.4], there exist a log resolution µ : X′ → X of (X,∆), a morphism
f ′ : X′ → Z′, an effective divisor ∆Z′ on Z′, and a (not necessarily effective)
Q-divisor B = B+ − B− that satisfy:

(1) (X′,∆′) is a log smooth model and (Z′,∆Z′) is klt,

(2) KX′ + ∆
′ ∼Q f ′∗(KZ′ + ∆Z′) + B,
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(3) there exist positive integers m1 and m2 such that

H0(X′,mm1(KX′ + ∆
′)) = H0(Z′,mm2(KZ′ + ∆Z′)),

for any positive integers m,

(4) B− is f ′-exceptional and

(5) f∗OX(xlB+y) = OY for every sufficiently divisible integer l.

Moreover f ′ is the resolution of a flattening by the Fujino–Mori construc-
tion (cf. [FM, 4.4]). Thus B− is µ-exceptional so that

Pσ(µ∗(KX + ∆)) = Pσ(KX′ + ∆
′ + B−).

We now turn our attention to B+. Note that ν((KX′ +∆
′)|F′) = 0 for a general

fiber F′ of f ′ (since the same is true on the general fiber of f ). In particular
Pσ(KX′ + ∆

′)|F′ ≡ 0. Thus

B+|F′ ≤ Nσ((KX′ + ∆
′)|F′) = Nσ(KX′ + ∆

′)|F′ .

This implies that B+h ≤ Nσ(KX′ + ∆
′), where B+h is the horizontal part of B+.

Therefore

Pσ(KX′ + ∆
′ + B−) ∼Q Pσ( f ′∗(KZ′ + ∆Z′) + B+v + B+h )

= Pσ( f ′∗(KZ′ + ∆Z′) + B+v )
= Pσ( f ′∗(KZ′ + ∆Z′))

where the last step follows from the fact that B+v is f ′-degenerate by Lemma
1.1.11.

�

Corollary 4.3.4. Let (X,∆) be a kawamata log terminal pair. Suppose that
f : X → Z is a projective morphism with connected fibers to a normal projective
variety Z such that ν((KX + ∆)|F) = 0 for a general fiber F of f . Then there exists
a higher birational model Z′ of Z and a kawamata log terminal pair (Z′,∆Z′) such
that KX + ∆ is abundant if and only if KZ′ + ∆Z′ is abundant.

Proof. This follows from Lemma 4.3.3 and the fact that the numerical di-
mension is invariant under pull-back and under passing to the positive
part Pσ(L). �
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4.4 Reduction maps and τ̃(X,∆)

The results of the previous section are most useful when combined with
the theory of numerical reduction maps. We will focus on the D-trivial
reduction map as defined in [Leh1]:

Theorem 4.4.1 ([Leh1, Theorem 1.1]). Let X be a normal variety and D a
pseudo-effective R-Cartier divisor on X. Then there exist a projective birational
morphism φ : W → X and a surjective projective morphism f : W → Y with
connected fibers such that

(0) W is smooth,

(1) ν(φ∗D|F) = 0 for a general fiber F of f ,

(2) if w ∈ W is very general and C is an irreducible curve through w with
dim f (C) = 1, then φ∗L.C > 0, and

(3) If there exist a projective birational morphism φ′ : W′ → X and a domi-
nant projective morphism f ′ : W′ → Y′ with connected fibers satisfying
condition (2), then f ′ factors birationally through f .

We call the composition f ◦ ϕ−1 : Xd Y the D-trivial reduction map. Note that
it is only unique up to birational equivalence.

Remark 4.4.2. The D-trivial reduction map is different from the pseudo-
effective reduction map (cf. [E2] and [Leh1]), the partial nef reduction map
(cf. [BDPP]), and Tsuji’s numerically trivial fibration with minimal singular
metrics (cf. [Ts] and [E1]).

Definition 4.4.3. Let X be a normal variety and D a pseudo-effective R-
Cartier divisor on X. If f : Xd Y denotes the D-trivial reduction map, we
define

τ(D) := dim Y.

The following properties follow immediately from the definition.

Lemma 4.4.4. Let X be a normal projective variety and D a pseudo-effective
R-Cartier divisor on X. Then

(1) ν(D) = 0 if τ(D) = 0,

(2) if D′ is a pseudo-effective R-Cartier divisor on X such that D′ ≥ D, then
τ(D′) ≥ τ(D), and
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(3) τ( f ∗D) = τ(D) for every surjective morphism f : Y → X from a normal
variety.

Since the canonical divisor is not a birational invariant, we need to
introduce a slight variant of this construction that accounts for every ϵ-log
smooth model.

Remark 4.4.5. Let (X,∆) be a kamawata log terminal pair with KX + ∆
pseudo-effective. Suppose that ϕ : W → X is a log resolution of (X,∆).
Then the value of τ(KW + ∆

ϵ
W) for the ϵ-log smooth model (W,∆ϵW) is in-

dependent of the choice of ϵ > 0, since if C is a movable curve with
(KW + ∆

ϵ
W).C = 0 then E.C = 0 for any ϕ-exceptional divisor E.

Definition 4.4.6. Let (X,∆) be a projective kawamata log terminal pair such
that KX + ∆ is pseudo-effective. We define

τ̃(X,∆) = max{τ(KW + ∆
ϵ
W)|(W,∆ϵW) is an ϵ-log smooth model

of (X,∆) with 0 < ϵ≪ 1}.

Lemma 4.4.7. Let (X,∆) be a kawamata log terminal pair such that KX + ∆ is
pseudo-effective. Then there exists an ϵ-log smooth model φ : (W,∆ϵW) → (X,∆)
such that the (KW + ∆

ϵ
W)-trivial reduction map is a morphism on W whose image

has dimension τ̃(X,∆) for a sufficiently small positive number ϵ.

Proof. We may certainly assume that τ(KW + ∆
ϵ
W) = τ̃(X,∆). Suppose W′

resolves the (KW + ∆
ϵ
W)-trivial reduction map. By the maximality of the

definition, the (KW′ + ∆
ϵ′
W′)-trivial reduction map is birationally equivalent

to the (KW + ∆
ϵ
W)-trivial reduction map for any sufficiently small ϵ′ > 0.

Thus it can be realized as the (resolved) morphism on W′. �

Remark 4.4.8. If D is a nef divisor, the D-trivial reduction map is bira-
tionally equivalent to the nef reduction map of D (see [BCEK+]). Thus
n(D) = τ(D). Moreover, for a klt pair (X,∆) such that KX + ∆ is nef,
τ(KX + ∆) = τ̃(X,∆) since the nef reduction map is almost holomorphic.

Next, we prove that τ̃(X,∆) is preserved under flips and divisorial
contractions. Although we do not need this property to prove our main
results, we include it for completeness.

Definition 4.4.9. Let X be an n-dimensional normal projective variety and
T ⊂ Chow(X) an irreducible and compact normal covering family of 1-
cycles in the sense of Camapana (cf. [C]). Let D be a R-Cartier divisor on
X. A covering family {Ct}t∈T is D-trivial if D.Ct = 0 for all t ∈ T. A covering
family {Ct}t∈T is 1-connected if for general x and y ∈ X there is t ∈ T such
that Ct is an irreducible curve containing x and y.
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Proposition 4.4.10 (cf. [Leh1, Proposition 4.8]). Let X be a normal variety and
D an R-divisor on X. Suppose that there exists a D-trivial 1-connected covering
family {Ct}t∈T. Then ν(D) = 0.

Proof. For any birational map φ : W → X, the strict transforms of the
curves Ct are still 1-connecting. Thus, the generic quotient (in the sense of
[Leh1, Construction 3.2]) of X by the family {Ct}t∈T contracts X to a point.
Thus ν(D) = ν( f ∗D) = 0 by [Leh1, Theorem 1.1]. �

Proposition 4.4.11. Let (X,∆) be a kawamata log terminal pair. Then ν(KX+∆) =
0 if and only if there exists a (KX + ∆)-trivial 1-connected covering family {Ct}t∈T
such that Ct ∩ B−(KX + ∆) = ∅ for general t ∈ T.

Proof. The reverse implication follows from Proposition 4.4.10. Now as-
sume that ν(KX + ∆) = 0. By [D, Corollaire 3.4], we get a good minimal
model (Y, Γ) of (X,∆) with KY + Γ ∼Q 0. Take the following log resolutions:

W
p

~~~~
~~
~~
~~ q

  A
AA

AA
AA

A

X //_______ Y.

Set
p∗(KX + ∆) = q∗(KY + Γ) + E,

where E is an effective q-exceptional divisor. Now, since KY + Γ ∼Q 0, it
holds that

p∗(KX + ∆) ∼Q E.

Because codim q(Supp E) ≥ 2, there exists a complete intersection irre-
ducible curve C with respect to very ample divisors H1, . . . ,Hn−1 contain-
ing two general points x, y such that C ∩ q(Supp E) = ∅. Let C̄ be the strict
transform of C on X. Then

(KX + ∆).C̄ = 0.

Since p(Supp E) = B−(KX + ∆), the desired family can be constructed by
deforming C. �

Proposition 4.4.12. Let (X,∆) be a klt pair such that KX +∆ is pseudo-effective.
Suppose that

φ : (X,∆)d (X′,∆′)

is a flip or a divisorial contraction. Then τ̃(X,∆) = τ̃(X′,∆′).
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Proof. Consider a log resolution

W
p

~~}}
}}
}}
}} q

!!C
CC

CC
CC

C

X //_______ X′.

Write
KW + ∆

ϵ
W = p∗(KX + ∆) + G

for the ϵ-log smooth structure induced by (X,∆) and

KW + ∆
′ϵ
W = q∗(KX′ + ∆

′) + G′,

for the ϵ-log smooth structure induced by (X′,∆′) for a sufficiently small
positive number ϵ. (Note that these structures might differ, if for example
ϕ is centered in a locus along which the discrepancy is negative.) Using
Lemma 4.4.7, we may find a log resolution W so that

(1) the (KW + ∆
ϵ
W)-trivial reduction map is a morphism f : W → Y with

dim Y = τ̃(X,∆), and

(2) the (KW +∆
′ϵ
W)-trivial reduction map is a morphism f ′ : W → Y′ with

dim Y′ = τ̃(X′,∆′) and Y′ is smooth.

Sinceϕ is a (KX+∆)-negative contraction, there is some effective q-exceptional
divisor E′ such that KW + ∆

ϵ
W = KW + ∆

′ϵ
W + E′. From Lemma 4.4.4 (2), it

holds that τ̃(X,∆) ≥ τ̃(X′,∆′). Note that as E′ is q-exceptional and (W,∆′ϵW)
is an ϵ-log smooth model with ϵ > 0, we have τE′ ≤ Nσ(KW +∆

′ϵ
W) for some

τ > 0.
Every movable curve C with (KW+∆

ϵ
W).C = 0 also satisfies (KW+∆

′ϵ
W).C =

0. Conversely, by Proposition 4.4.11 a very general fiber F′ of f ′ admits
a 1-connecting covering family of KW + ∆

′ϵ
W-trivial curves {Ct}t∈T such that

Ct ∩ B−((KW + ∆
′ϵ
W)|F′) = ∅ for general t ∈ T.

Since E′|F′ is effective and ν((KW + ∆
′ϵ
W)|F′) = 0, we know that τE′|F′ ≤

Nσ((KW + ∆
′ϵ
W)|F′). Thus E′.Ct = 0 for general t since Ct avoids B−((KW +

∆′ϵW)|F′). So

(KW + ∆
ϵ
W).Ct = (KW + ∆

′ϵ
W + E′).Ct

= 0.

By the universal property of the D-trivial reduction map, f and f ′ are
birationally equivalent. �

Corollary 4.4.13. Let (X,∆) be a klt pair such that KX + ∆ is pseudo-effective.
Suppose that (X,∆) has a good minimal model. Then

τ̃(X,∆) = κ(X,∆).
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4.5 The MMP and the (KX + ∆)-trivial reduction
map

In this section we use our main technical result Theorem 4.3.3 to analyze
the main conjectures of the minimal model program inductively.

Theorem 4.5.1. Assume that the existence of good minimal models for klt pairs
in dimension d. Let (X,∆) be a kawamata log terminal pair such that KX + ∆ is
pseudo-effective and τ̃(X,∆) = d. Then there exists a good log minimal model of
(X,∆).

Proof. Using Lemma 4.4.7, we can find a birational morphism φ : W →
X from an ϵ-log smooth model (W,∆ϵW) of (X,∆) for a sufficiently small
positive number ϵ and a projective morphism f : W → Y with connected
fibers such that

(i) ν((KW + ∆
ϵ
W)|F) = 0 for the general fiber F of f and

(ii) dim Y = τ̃(X,∆).

Theorem 4.3.2 and Corollary 4.3.4 imply that (W,∆ϵW) has a good minimal
model. (X,∆) then has a good minimal model by [BCHM, Lemma 3.6.10].

�

Corollary 4.5.2. Conjecture 4.1.4 holds up to dimension n if and only Conjecture
4.1.1 holds up to dimension n.

Proof. Assume that Conjecture 4.1.4 holds up to dimension n. By induction
on dimension, we may assume that Conjecture 4.1.1 holds up to dimension
n−1. Let (X,∆) be a kawamata log terminal pair of dimension n. If τ̃(X,∆) <
dim X then KX + ∆ is abundant by Theorem 4.5.1. If τ̃(X,∆) = dim X then
the abundance of (KX + ∆) follows by assumption from Conjecture 4.1.4.

Conversely, assume that Conjecture 4.1.1 holds up to dimension n.
By Theorem 4.3.2 we obtain the existence of good minimal models up to
dimension n. Let (X,∆) be a kawamata log terminal pair of dimension
k ≤ n such that τ̃(X,∆) = k. By Corollary 4.4.13 X is covered by irreducible
curves C such that (KX + ∆).C = 0 unless κ(KX + ∆) = n. �

Remark 4.5.3. It seems likely that one could formulate a stronger version
of Theorem 4.5.2 using the pseudo-effective reduction map for KX + ∆ (cf.
[E2] and [Leh1]). The difficulty is that the pseudo-effective reduction map
only satisfies the weaker condition ν(Pσ(KX +∆)|F) = 0 on a general fiber F,
so it is unclear how to use the inductive hypothesis to relate F with X.
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5
Log pluricanonical representations and

abundance conjecture

5.1 Introduction

The following theorem is one of the main results of this chapter (cf. The-
orem 5.3.13). It is a solution of the conjecture raised in [F2] (see [F2,
Conjecture 3.2]). For the definition of the log pluricanonical representation
ρm, see Definitions 5.2.6 and 5.2.9 below.

Theorem 5.1.1 (cf. [F2, Section 3], [G2, Theorem B]). Let (X,∆) be a projective
log canonical pair. Suppose that m(KX + ∆) is Cartier and that KX + ∆ is semi-
ample. Then ρm(Bir(X,∆)) is a finite group.

In the framework of [F2], Theorem 5.1.1 will play important roles in the
study of Conjecture 5.1.2 (see [Ft2], [AFKM], [Ka4], [KeMaMc], [F2], [F13],
[G2], and so on).

Conjecture 5.1.2 ((Log) abundance conjecture). Let (X,∆) be a projective semi
log canonical pair such that ∆ is a Q-divisor. Suppose that KX + ∆ is nef. Then
KX + ∆ is semi-ample.

Theorem 5.1.1 was settled for surfaces in [F2, Section 3] and for the case
where KX + ∆ ∼Q 0 by [G2, Theorem B]. In this paper, to carry out the
proof of Theorem 5.1.1, we introduce the notion of B̃-birational maps and
B̃-birational representations for sub kawamata log terminal pairs, which is
new and is indispensable for generalizing the arguments in [F2, Section 3]
for higher dimensional log canonical pairs. For the details, see Section 5.3.

By Theorem 5.1.1, we obtain a key result.
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Theorem 5.1.3 (cf. Proposition 5.4.3). Let (X,∆) be a projective semi log canon-
ical pair. Let ν : Xν → X be the normalization. Assume that KXν+Θ = ν∗(KX+∆)
is semi-ample. Then KX + ∆ is semi-ample.

By Theorem 5.1.3, Conjecture 5.1.2 is reduced to the problem for log
canonical pairs.

Let X be a smooth projective n-fold. By our experience on the low-
dimensional abundance conjecture, we think that we need the abundance
theorem for projective semi log canonical pairs in dimension ≤ n − 1 in
order to prove the abundance conjecture for X. Therefore, Theorem 5.1.3
seems to be an important step for the inductive approach to the abundance
conjecture. The general strategy for proving the abundance conjecture is
explained in the introduction of [F2]. Theorem 5.1.3 is a complete solution
of Step (v) in [F2, 0. Introduction].

As applications of Theorem 5.1.3 and [F9, Theorem 1.1], we have the
following useful theorems.

Theorem 5.1.4 (cf. Theorem 5.4.2). Let (X,∆) be a projective log canonical pair.
Assume that KX + ∆ is nef and log abundant. Then KX + ∆ is semi-ample.

It is a generalization of the well-known theorem for kawamata log
terminal pairs (see, for example, [F7, Corollary 2.5]). Theorem 5.1.5 may
be easier to understand than Theorem 5.1.4.

Theorem 5.1.5 (cf. Theorem 5.4.6). Let (X,∆) be an n-dimensional projective
log canonical pair. Assume that the abundance conjecture holds for projective
divisorial log terminal pairs in dimension ≤ n − 1. Then KX + ∆ is semi-ample if
and only if KX + ∆ is nef and abundant.

We have many other applications. In this introduction, we explain only
two of them. The first one is an answer to Professor János Kollár’s question.
For a more general result, see Corollary 5.4.11.

Theorem 5.1.6 (cf. Theorem 5.4.9). Let f : X → Y be a projective morphism
between projective varieties. Let (X,∆) be a log canonical pair such that KX + ∆
is numerically trivial over Y. Then KX + ∆ ∼Q,Y 0.

The second one is a generalization of [Fk5, Theorem 0.1] and [CKP,
Corollary 3]. It also contains Theorem 5.1.4. For a further generalization,
see Remark 5.4.19.

Theorem 5.1.7 (cf. Theorem 5.4.18). Let (X,∆) be a projective log canonical
pair and let D be aQ-CartierQ-divisor on X such that D is nef and log abundant
with respect to (X,∆). Assume that KX + ∆ ≡ D. Then KX + ∆ is semi-ample.
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The reader can find many applications and generalizations in Section
5.4.

We summarize the contents of this chapter. In Section 5.2, we collects
some basic notations and results. Section 5.3 is the main part of this paper.
In this section, we prove Theorem 5.1.1. We divide the proof into the three
steps: sub kawamata log terminal pairs in 5.3.1, log canonical pairs with
big log canonical divisor in 5.3.2, and log canonical pairs with semi-ample
log canonical divisor in 5.3.3. Section 5.4 contains various applications of
Theorem 5.1.1. They are related to the abundance conjecture: Conjecture
5.1.2. For example, we give an affirmative answer to Professor János
Kollár’s question (cf. Theorem 5.1.6). In the subsection 5.4.2, we generalize
the main theorem in [Fk5] (cf. [CKP, Corollary 3]), and so on. In Section 5.5,
we discuss the relationship among the various conjectures in the minimal
model program

5.2 Slc, sdlt, and log pluricanonical representa-
tions

Definition 5.2.1 (Slc and sdlt). Let X be a reduced S2 scheme. We assume
that it is pure n-dimensional and normal crossing in codimension one. Let
∆ be an effective Q-divisor on X such that KX + ∆ is Q-Cartier. We assume
that ∆ =

∑
i ai∆i where ai ∈ Q and ∆i is an irreducible codimension one

closed subvariety of X such that OX,∆i is a DVR for every i. Let X = ∪iXi

be the irreducible decomposition and let ν : Xν := ⨿iXν
i → X = ∪iXi be the

normalization. AQ-divisorΘ on Xν is defined by KXν +Θ = ν∗(KX+∆) and
a Q-divisor Θi on Xν

i by Θi := Θ|Xν
i
. We say that (X,∆) is a semi log canonical

n-fold (an slc n-fold, for short) if (Xν,Θ) is lc. We say that (X,∆) is a semi
divisorial log terminal n-fold (an sdlt n-fold, for short) if Xi is normal, that is,
Xν

i is isomorphic to Xi, and (Xν,Θ) is dlt.

We recall a very important example of slc pairs.

Example 5.2.2. Let (X,∆) be a Q-factorial lc pair. We put S = x∆y. Assume
that (X,∆ − εS) is klt for some 0 < ε ≪ 1. Then (S,∆S) is slc where
KS + ∆S = (KX + ∆)|S.

Remark 5.2.3. Let (X,∆) be a dlt pair. We put S = x∆y. Then it is well
known that (S,∆S) is sdlt where KS + ∆S = (KX + ∆)|S.

The following theorem was originally proved by Professor Christopher
Hacon (cf. [F12, Theorem 10.4], [KoKov, Theorem 3.1]). For a simpler
proof, see [F10, Section 4].
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5.2.4 (Log pluricanonical representations). Nakamura–Ueno ([NakUe]) and
Deligne proved the following theorem (see [U, Theorem 14.10]).

Theorem 5.2.5 (Finiteness of pluricanonical representations). Let X be a
compact complex Moishezon manifold. Then the image of the group homomor-
phism

ρm : Bim(X)→ AutC(H0(X,mKX))

is finite, where Bim(X) is the group of bimeromorphic maps from X to itself.

For considering the logarithmic version of Theorem 5.2.5, we need the
notion of B-birational maps and B-pluricanonical representations.

Definition 5.2.6 ([F2, Definition 3.1]). Let (X,∆) (resp. (Y,Γ)) be a pair such
that X (resp. Y) is a normal scheme with a Q-divisor ∆ (resp. Γ) such that
KX + ∆ (resp. KY + Γ) is Q-Cartier. We say that a proper birational map
f : (X,∆)d (Y,Γ) is B-birational if there exists a common resolution

W
α

~~~~
~~
~~
~~ β

  @
@@

@@
@@

@

X
f

//_______ Y

such that
α∗(KX + ∆) = β∗(KY + Γ).

This means that it holds that E = F when we put KW = α∗(KX + ∆) + E and
KW = β∗(KY + Γ) + F.

Let D be a Q-Cartier Q-divisor on Y. Then we define

f ∗D := α∗β∗D.

It is easy to see that f ∗D is independent of the common resolution α : W →
X and β : W → Y.

Finally, we put

Bir(X,∆) = {σ | σ : (X,∆)d (X,∆) is B-birational}.

It is obvious that Bir(X,∆) has a natural group structure.

Remark 5.2.7. In Definition 5.2.6, let ψ : X′ → X be a proper birational
morphism from a normal scheme X′ such that KX′ +∆

′ = ψ∗(KX +∆). Then
we can easily check that Bir(X,∆) ≃ Bir(X′,∆′) by g 7→ ψ−1 ◦ g ◦ ψ for
g ∈ Bir(X,∆).
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We give a basic example of B-birational maps.

Example 5.2.8 (Quadratic transformation). Let X = P2 and let ∆ be the
union of three general lines on P2. Let α : W → X be the blow-up at the
three intersection points of ∆ and let β : W → X be the blow-down of the
strict transform of ∆ on W. Then we obtain the quadratic transformation φ.

W
α

~~}}
}}
}}
}} β

  A
AA

AA
AA

A

X φ
//_______ X

For the details, see [H, Chapter V Example 4.2.3]. In this situation, it is
easy to see that

α∗(KX + ∆) = KW + Θ = β
∗(KX + ∆).

Therefore, φ is a B-birational map of the pair (X,∆).

Definition 5.2.9 ([F2, Definition 3.2]). Let X be a pure n-dimensional normal
scheme and let ∆ be a Q-divisor, and let m be a nonnegative integer such
that m(KX + ∆) is Cartier. A B-birational map σ ∈ Bir(X,∆) defines a linear
automorphism of H0(X,m(KX+∆)). Thus we get the group homomorphism

ρm : Bir(X,∆)→ AutC(H0(X,m(KX + ∆))).

The homomorphism ρm is called a B-pluricanonical representation or log
pluricanonical representation for (X,∆). We sometimes simply denote ρm(g)
by g∗ for g ∈ Bir(X,∆) if there is no danger of confusion.

Let X be a pure n-dimensional normal scheme and g : Xd X a proper
birational (or bimeromorphic) map. Set X =

⨿k
i=1 Xi. The map g defines

σ ∈ Sk such that g|Xi : Xi d Xσ(i), whereSk is the symmetric group of degree
k. Hence gk! induces gk!|Xi : Xi d Xi. By Burnside’s theorem ([CR, (36.1)
Theorem]), we remark the following:

Remark 5.2.10. For proving the finiteness of log pluricanonical represen-
tation, we can check that it suffices to show it under the assumption that
X is connected. Moreover, Theorem 5.2.5 for a pure dimensional disjoint
union of some compact Moishezon complex manifolds holds.

In the subsection 5.3.1, we will consider B̃-pluricanonical representations
for subklt pairs (cf. Definition 5.3.1). In some sense, they are generalizations
of Definitions 5.2.6 and 5.2.9. We need them for our proof of Theorem 5.1.1.
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Remark 5.2.11. Let (X,∆) be a projective dlt pair. We note that g ∈ Bir(X,∆)
does not necessarily induce a birational map g|T : T d T, where T = x∆y
(see Example 5.2.8). However, g ∈ Bir(X,∆) induces an automorphism

g∗ : H0(T,OT(m(KT + ∆T))) ∼−→ H0(T,OT(m(KT + ∆T)))

where (KX + ∆)|T = KT + ∆T and m is a nonnegative integer such that
m(KX + ∆) is Cartier (see the proof of [F2, Lemma 4.9]). More precisely, let

W
α

~~}}
}}
}}
}} β

  A
AA

AA
AA

A

X g
//_______ X

be a common log resolution such that

α∗(KX + ∆) = KW + Θ = β
∗(KX + ∆).

Then we can easily see that

α∗OS ≃ OT ≃ β∗OS,

where S = Θ=1, by the Kawamata–Viehweg vanishing theorem. Thus we
obtain an automorphism

g∗ : H0(T,OT(m(KT + ∆T)))
β∗−→ H0(S,OS(m(KS + ΘS)))
α∗−1

−→ H0(T,OT(m(KT + ∆T)))

where (KW + Θ)|S = KS + ΘS.

Let us recall an important lemma on B-birational maps, which will be
used in the proof of the main theorem (cf. Theorem 5.3.13).

Lemma 5.2.12. Let f : (X,∆)→ (X′,∆′) be a B-birational map between projective
dlt pairs. Let S be an lc center of (X,∆) such that KS + ∆S = (KX + ∆)|S. We take
a suitable common log resolution as in Definition 5.2.6.

(W,Γ)
α

zzuuu
uu
uu
uu β

%%JJ
JJ

JJ
JJ

J

(X,∆)
f

//_________ (X′,∆′)

Then we can find an lc center V of (X,∆) contained in S with KV+∆V = (KX+∆)|V,
an lc center T of (W,Γ) with KT + ΓT = (KX +∆)|T, and an lc center V′ of (X′,∆′)
with KV′ + ∆

′
V′ = (KX′ + ∆

′)|V′ such that the following conditions hold.
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(a) α|T and β|T are B-birational morphisms.

(T,ΓT)
α|T

zztt
tt
tt
tt
t β|T

%%KK
KKK

KKK
KK

(V,∆V) (V′,∆′V′)

Therefore, (β|T) ◦ (α|T)−1 : (V,∆V)d (V′,∆′|V′) is a B-birational map.

(b) H0(S,m(KS + ∆S)) ≃ H0(V,m(KV + ∆V)) by the natural restriction map
where m is a nonnegative integer such that m(KX + ∆) is Cartier.

Proof. See Claim (An) and Claim (Bn) in the proof of [F2, Lemma 4.9]. �

We close this section with a remark on the minimal model program
with scaling. For the details, see Section 1.3.2.

5.2.13 (Minimal model program with ample scaling). Let f : X → Z be a
projective morphism between quasi-projective varieties and let (X,B) be a
Q-factorial dlt pair. Let H be an effective f -ampleQ-divisor on X such that
(X,B +H) is lc and that KX + B +H is f -nef. Under these assumptions, we
can run the minimal model program on KX + B with scaling of H over Z.
We call it the minimal model program with ample scaling.

Assume that KX + B is not pseudo-effective over Z. We note that the
above minimal model program always terminates at a Mori fiber space
structure over Z. By this observation, the results in [F2, Section 2] hold in
every dimension. Therefore, we will freely use the results in [F2, Section
2] for any dimensional varieties.

From now on, we assume that KX+B is pseudo-effective and dim X = n.
We further assume that the weak non-vanishing conjecture (cf. Conjecture
5.5.1) for projective Q-factorial dlt pairs holds in dimension ≤ n. Then the
minimal model program on KX + B with scaling of H over Z terminates
with a minimal model of (X,B) over Z by [B2, Theorems 1.4, 1.5].

5.3 Finiteness of log pluricanonical representa-
tions

In this section, we give a proof of Theorem 5.1.1. We divide the proof into
the three steps: subklt pairs in 5.3.1, lc pairs with big log canonical divisor
in 5.3.2, and lc pairs with semi-ample log canonical divisor in 5.3.3.
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5.3.1 Klt pairs

In this subsection, we prove Theorem 5.1.1 for klt pairs. More precisely, we
prove Theorem 5.1.1 for B̃-pluricanonical representations for projective subklt
pairs without assuming the semi-ampleness of log canonical divisors. This
formulation is indispensable for the proof of Theorem 5.1.1 for lc pairs.

First, let us introduce the notion of B̃-pluricanonical representations for
subklt pairs.

Definition 5.3.1 (B̃-pluricanonical representations for subklt pairs). Let
(X,∆) be an n-dimensional projective subklt pair such that X is smooth and
that ∆ has a simple normal crossing support. We write ∆ = ∆+ −∆− where
∆+ and ∆− are effective and have no common irreducible components. Let
m be a positive integer such that m(KX + ∆) is Cartier. In this subsection,
we always see

ω ∈ H0(X,m(KX + ∆))

as a meromorphic m-ple n-form on X which vanishes along m∆− and has
poles at most m∆+. By Bir(X), we mean the group of all the birational
mappings of X onto itself. It has a natural group structure induced by the
composition of birational maps. We define

B̃irm(X,∆) =
{

g ∈ Bir(X)
∣∣∣∣∣ g∗ω ∈ H0(X,m(KX + ∆)) for

every ω ∈ H0(X,m(KX + ∆))

}
.

Then it is easy to see that B̃irm(X,∆) is a subgroup of Bir(X). An element
g ∈ B̃irm(X,∆) is called a B̃-birational map of (X,∆). By the definition of
B̃irm(X,∆), we get the group homomorphism

ρ̃m : B̃irm(X,∆)→ AutC(H0(X,m(KX + ∆))).

The homomorphism ρ̃m is called the B̃-pluricanonical representation of B̃irm(X,∆).
We sometimes simply denote ρ̃m(g) by g∗ for g ∈ B̃irm(X,∆) if there is no
danger of confusion. There exists a natural inclusion Bir(X,∆) ⊂ B̃irm(X,∆)
by the definitions.

Next, let us recall the notion of L2/m-integrable m-ple n-forms.

Definition 5.3.2. Let X be an n-dimensional connected complex manifold
and let ω be a meromorphic m-ple n-form. Let {Uα} be an open covering of
X with holomorphic coordinates

(z1
α, z

2
α, · · · , zn

α).
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We can write
ω|Uα = φα(dz1

α ∧ · · · ∧ dzn
α)m,

where φα is a meromorphic function on Uα. We give (ω ∧ ω̄)1/m by

(ω ∧ ω̄)1/m|Uα =

( √
−1

2π

)n

|φα|2/mdz1
α ∧ dz̄1

α · · · ∧ dzn
α ∧ dz̄n

α.

We say that a meromorphic m-ple n-form ω is L2/m-integrable if∫
X

(ω ∧ ω̄)1/m < ∞.

We can easily check the following two lemmas.

Lemma 5.3.3. Let X be a compact connected complex manifold and let D be a
reduced normal crossing divisor on X. Set U = X \ D. If ω is an L2-integrable
meromorphic n-form such thatω|U is holomorphic, thenω is a holomorphic n-form.

Proof. See, for example, [Sak, Theorem 2.1] or [Ka1, Proposition 16]. �

Lemma 5.3.4 (cf. [G2, Lemma 4.8]). Let (X,∆) be a projective subklt pair such
that X is smooth and ∆ has a simple normal crossing support. Let m be a
positive integer such that m∆ is Cartier and let ω ∈ H0(X,OX(m(KX + ∆))) be a
meromorphic m-ple n-form. Then ω is L2/m-integrable.

Proof. Since (X,∆) is subklt, we may write ∆ =
∑

i ai∆i, where ∆i is a prime
divisor and ai < 1. We see that 1 − 1/m > ai and mai is an integer for
any i. Thus ω is a meromorphic m-ple n-form with at most (m − 1)-ple
pole along ∆i for all i. By [Sak, Theorem 2.1] and holomorphicity of ω|U,∫

X
(ω ∧ ω̄)1/m =

∫
U

(ω|U ∧ ω̄|U)1/m < ∞, where U = X \ Supp∆. �

By Lemma 5.3.4, we obtained the following result.

Proposition 5.3.5 ([G2, Proposition 4.9]). Let (X,∆) be an n-dimensional pro-
jective subklt pair such that X is smooth, connected, and ∆ has a simple normal
crossing support. Let g ∈ B̃irm(X,∆) be a B̃-birational map where m is a positive
integer such that m∆ is Cartier, and let

ω ∈ H0(X,m(KX + ∆))

be a nonzero meromorphic m-ple n-form on X. Suppose that g∗ω = λω for some
λ ∈ C. Then there exists a positive integer Nm,ω such that λNm,ω = 1 and Nm,ω

does not depend on g.
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Proof. We consider the projective space bundle

π : M := PX(OX(−KX)
⊕
OX)→ X.

Set ∆ = ∆+ − ∆−, where ∆+ and ∆− are effective, and have no common
components. Let {Uα} be coordinate neighborhoods of X with holomorphic
coordinates (z1

α, z2
α, · · · , zn

α). Since ω ∈ H0(X,m(KX + ∆)), we can write ω
locally as

ω|Uα =
φα
δα

(dz1
α ∧ · · · ∧ dzn

α)m,

where φα and δα are holomorphic with no common factors, and φα
δα

has
poles at most m∆+. We may assume that {Uα} gives a local trivialization of
M, i.e. M|Uα := π−1Uα ≃ Uα ×P1. We set a coordinate (z1

α, z2
α, · · · , zn

α, ξ
1
α : ξ2

α)
of Uα × P1 with homogeneous coordinates (ξ1

α : ξ2
α) of P1. Note that

ξ1
α

ξ2
α

= kαβ
ξ1
β

ξ2
β

in M|Uα
∩

Uβ ,

where kαβ = det(∂zi
β/∂z j

α)1≤i, j≤n. Set

YUα = {(ξ1
α)mδα − (ξ2

α)mφα = 0} ⊂ Uα × P1.

We can patch {YUα} easily and denote the patching by Y. Note that Y may
have singularities and be reducible. Let π1 : M′ →M be a log resolution of
(M,Y∪π−1(Supp∆)) such that Y′ is smooth, where Y′ is the strict transform
of Y on M′. We set F′ = π ◦ π1 and f ′ = F′|Y′ . Remark that Y′ may be
disconnected and a general fiber of f ′ is m points. Define a meromorphic
n-form on M by

Θ|M|Uα =
ξ1
α

ξ2
α

dz1
α ∧ · · · ∧ dzn

α.

We put θ′ = π∗1Θ|Y′ . By the definition,

(θ′)m = f ′∗ω.

Since
∫

X
(ω∧ ω̄)1/m < ∞ by Lemma 5.3.4, it holds that

∫
Y′
θ′∧ θ̄′ < ∞. Hence

θ′ is L2-integrable. Since f ′−1(Supp∆) is simple normal crossings, θ′ is a
holomorphic n-form on Y′ by Lemma 5.3.3.

We take a ν ∈ R such that νm = λ. We define a birational map ḡν : Md
M by

ḡν : (z1
α, z

2
α, · · · , zn

α, ξ
1
α : ξ2

α)→ (g(z1
α, z

2
α, · · · , zn

α), ν(det(∂g/∂zα))−1ξ1
α : ξ2

α)

46



on Uα. Then ḡν induces a birational map h′ : Y′ d Y′. It satisfies that

Y′

f ′
��

h′ //___

	

Y′

f ′
��

X
g //___ X.

Thus we see

h′∗(θ′)m = h′∗ f ′∗ω = f ′∗g∗ω = λ f ′∗ω = λ(θ′)m.

Because Theorem 5.2.5 holds for pure dimensional possibly discon-
nected projective manifolds (Remark 5.2.10), there exists a positive integer
Nm,ω such that λNm,ω = 1 and Nm,ω does not depend on g. We finish the
proof of Proposition 5.3.5.

�

Remark 5.3.6. By the proof of [G2, Proposition 4.9] and [U, Theorem 14.10],
we know that φ(Nm,ω) ≤ bn(Y′), where bn(Y′) is the n-th Betti number of Y′

which is in the proof of [G2, Proposition 4.9] and φ is the Euler function.

Proposition 5.3.7 (cf. [U, Proposition 14.7]). Let (X,∆) be a projective subklt
pair such that X is smooth, connected, and∆ has a simple normal crossing support,
and let

ρ̃m : B̃irm(X,∆)→ AutC(H0(X,m(KX + ∆)))

be the B̃-pluricanonical representation of B̃irm(X,∆) where m is a positive integer
such that m∆ is Cartier. Then ρ̃m(g) is semi-simple for every g ∈ B̃irm(X,∆).

Proof. If ρ̃m(g) is not semi-simple, there exist two linearly independent
elements φ1, φ2 ∈ H0(X,m(KX + ∆)) and nonzero α ∈ C such that

g∗φ1 = αφ1 + φ2, g∗φ2 = αφ2

by considering Jordan’s decomposition of g∗. Here, we denote ρ̃m(g) by g∗

for simplicity. By Proposition 5.3.5, we see that α is a root of unity. Let l be
a positive integer. Then we have

(gl)∗φ1 = α
lφ1 + lαl−1φ2.

Since g is a birational map, we have∫
X

(φ1 ∧ φ̄1)1/m =

∫
X

((gl)∗φ1 ∧ (gl)∗φ̄1)1/m.
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On the other hand, we have

lim
l→∞

∫
X

((gl)∗φ1 ∧ (gl)∗φ̄1)1/m = ∞.

For details, see the proof of [U, Proposition 14.7]. However, we know∫
X

(φ1 ∧ φ̄1)1/m < ∞ by Lemma 5.3.4. This is a contradiction. �

Proposition 5.3.8. The number Nm,ω in Proposition 5.3.5 is uniformly bounded
for every ω ∈ H0(X,m(KX + ∆)). Therefore, we can take a positive integer Nm

such that Nm is divisible by Nm,ω for every ω.

Proof. We consider the projective space bundle

π : M := PX(OX(−KX) ⊕ OX)→ X

and

V :=M × P(H0(X,OX(m(KX + ∆))))

→ X × P(H0(X,OX(m(KX + ∆)))).

We fix a basis {ω0, ω1, . . . , ωN} of H0(X,OX(m(KX+∆))). By using this basis,
we can identify P(H0(X,OX(m(KX +∆)))) with PN. We write the coordinate
of PN as (a0 : · · · : aN) under this identification. Set ∆ = ∆+ − ∆−, where
∆+ and ∆− are effective and have no common irreducible components.
Let {Uα} be coordinate neighborhoods of X with holomorphic coordinates
(z1
α, z2

α, · · · , zn
α). For any i, we can write ωi locally as

ωi|Uα =
φi,α

δi,α
(dz1

α ∧ · · · ∧ dzn
α)m,

where φi,α and δi,α are holomorphic with no common factors, and φi,α

δi,α
has

poles at most m∆+. We may assume that {Uα} gives a local trivialization of
M, i.e. M|Uα := π−1Uα ≃ Uα ×P1. We set a coordinate (z1

α, z2
α, · · · , zn

α, ξ
0
α : ξ1

α)
of Uα × P1 with the homogeneous coordinate (ξ0

α : ξ1
α) of P1. Note that

ξ0
α

ξ1
α

= kαβ
ξ0
β

ξ1
β

in M|Uα
∩

Uβ ,

where kαβ = det(∂zi
β/∂z j

α)1≤i, j≤n. Set

YUα = {(ξ0
α)m

N∏
i=0

δi,α − (ξ1
α)m

N∑
i=0

δ̂i,αaiφi,α = 0} ⊂ Uα × P1 × PN,
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where δ̂i,α = δ0,α · · · δi−1,α · δi+1,α · · · δN,α. By easy calculations, we see that
{YUα} can be patched and we obtain Y. We note that Y may have singu-
larities and be reducible. The induced projection f : Y → PN is surjective
and equidimensional. Let q : Y → X be the natural projection. By the
same arguments as in the proof of [U, Theorem 14.10], we have a suitable
stratificationPN = ⨿iSi, where Si is smooth and locally closed inPN for ev-
ery i, such that ( f −1(Si)ν, q∗∆| f−1(Si)ν)→ Si has a simultaneous log resolution
for every i, where f −1(Si)ν is the normalization of f −1(Si). Therefore, there
is a positive constant b such that for every p ∈ PN we have a resolution
µp : Ỹp → Yp := f −1(p) with the properties that bn(Ỹp) ≤ b and that µ∗p(q∗∆|Yp)
has a simple normal crossing support. Thus, by Remark 5.3.6, we obtain
Proposition 5.3.8. �

Now we have the main theorem of this subsection. We will use it in the
following subsections.

Theorem 5.3.9. Let (X,∆) be a projective subklt pair such that X is smooth, ∆
has a simple normal crossing support, and m(KX + ∆) is Cartier where m is a
positive integer. Then ρ̃m(B̃irm(X,∆)) is a finite group.

Proof. By Proposition 5.3.7, we see that ρ̃m(g) is diagonalizable. Moreover,
Proposition 5.3.8 implies that the order of ρ̃m(g) is bounded by a positive
constant Nm which is independent of g. Thus ρ̃m(B̃irm(X,∆)) is a finite
group by Burnside’s theorem. �

As a corollary, we obtain Theorem 5.1.1 for klt pairs without assuming
the semi-ampleness of log canonical divisors.

Corollary 5.3.10. Let (X,∆) be a projective klt pair such that m(KX+∆) is Cartier
where m is a positive integer. Then ρm(Bir(X,∆)) is a finite group.

Proof. Let f : Y → X be a log resolution of (X,∆) such that KY + ∆Y =
f ∗(KX + ∆). Since

ρm(Bir(Y,∆Y)) ⊂ ρ̃m(B̃irm(Y,∆Y)),

ρm(Bir(Y,∆Y)) is a finite group by Theorem 5.3.9. Therefore, we obtain that
ρm(Bir(X,∆)) ≃ ρm(Bir(Y,∆Y)) is a finite group. �

5.3.2 Lc pairs with big log canonical divisor

In this subsection, we prove the following theorem. The proof is essentially
the same as that of Case 1 in [F2, Theorem 3.5].
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Theorem 5.3.11. Let (X,∆) be a projective sublc pair such that KX + ∆ is big.
Let m be a positive integer such that m(KX + ∆) is Cartier. Then ρm(Bir(X,∆)) is
a finite group.

Before we start the proof of Theorem 5.3.11, we give a remark.

Remark 5.3.12. By Theorem 5.3.11, when KX + ∆ is big, Theorem 5.1.1,
the main theorem of this paper, holds true without assuming that KX + ∆
is semi-ample. Therefore, we state Theorem 5.3.11 separately for some
future usage. In Case 2 in the proof of Theorem 5.3.13, which is nothing
but Theorem 5.1.1, we will use the arguments in the proof of Theorem
5.3.11.

Proof. By taking a log resolution, we can assume that X is smooth and∆ has
a simple normal crossing support. By Theorem 5.3.9, we can also assume
that ∆=1 , 0. Since KX + ∆ is big, for a sufficiently large and divisible
positive integer m′, we obtain an effective Cartier divisor Dm′ such that

m′(KX + ∆) ∼Z ∆=1 +Dm′

by Kodaira’s lemma. It is easy to see that Supp g∗∆=1 = Supp∆=1 for every
g ∈ Bir(X,∆). This implies that g∗∆=1 ≥ ∆=1. Thus, we have a natural
inclusion

Bir(X,∆) ⊂ B̃irm′

(
X,∆ − 1

m′
∆=1

)
.

We consider the B̃-birational representation

ρ̃m′ : B̃irm′

(
X,∆ − 1

m′
∆=1

)
→ AutCH0(X,m′(KX + ∆) − ∆=1).

Then, by Theorem 5.3.9,

ρ̃m′

(
B̃irm′

(
X,∆ − 1

m′
∆=1

))
is a finite group. Therefore, ρ̃m′(Bir(X,∆)) is also a finite group. We put
a = |ρ̃m′(Bir(X,∆))| < ∞. In this situation, we can find a Bir(X,∆)-invariant
non-zero section s ∈ H0(X, a(m′(KX + ∆) − ∆=1)). By using s, we have a
natural inclusion

H0(X,m(KX + ∆)) ⊆ H0(X, (m +m′a)(KX + ∆) − a∆=1). (♠)

By the construction, Bir(X,∆) acts on the both vector spaces compatibly.
We consider the B̃-pluricanonical representation

ρ̃m+m′a : B̃irm+m′a

(
X,∆ − a

m +m′a
∆=1

)
→ AutCH0(X, (m +m′a)(KX + ∆) − a∆=1).
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Since (
X,∆ − a

m +m′a
∆=1

)
is subklt, we have that

ρ̃m+m′a

(
B̃irm+m′a

(
X,∆ − a

m +m′a
∆=1

))
is a finite group by Theorem 5.3.9. Therefore, ρ̃m+m′a(Bir(X,∆)) is also a
finite group. Thus, we obtain that ρm(Bir(X,∆)) is a finite group by the
Bir(X,∆)-equivariant embedding (♠). �

5.3.3 Lc pairs with semi-ample log canonical divisor

Theorem 5.3.13 is one of the main results of this paper (see Theorem 5.1.1).
We will treat many applications of Theorem 5.3.13 in Section 5.4.

Theorem 5.3.13. Let (X,∆) be an n-dimensional projective lc pair such that
KX +∆ is semi-ample. Let m be a positive integer such that m(KX +∆) is Cartier.
Then ρm(Bir(X,∆)) is a finite group.

Proof. We show the statement by the induction on n. By taking a dlt blow-
up (cf. Theorem 1.1.6), we may assume that (X,∆) is a Q-factorial dlt pair.
Let f : X → Y be a projective surjective morphism associated to k(KX + ∆)
for a sufficiently large and divisible positive integer k. By Corollary 5.3.10,
we may assume that x∆y , 0.

Case 1. x∆hy , 0, where ∆h is the horizontal part of ∆ with respect to f .

In this case, we put T = x∆y. Since m(KX + ∆) ∼Q,Y 0, we see that

H0(X,OX(m(KX + ∆) − T)) = 0.

Thus the restricted map

H0(X,OX(m(KX + ∆)))→ H0(T,OT(m(KT + ∆T)))

is injective, where KT + ∆T = (KX + ∆)|T. Let (Vi,∆Vi) be the disjoint union
of all the i-dimensional lc centers of (X,∆) for 0 ≤ i ≤ n − 1. We note that
ρm(Bir(Vi,∆Vi)) is a finite group for every i by the induction on dimension.
We put ki = |ρm(Bir(Vi,∆Vi))| < ∞ for 0 ≤ i ≤ n − 1. Let l be the least
common multiple of ki for 0 ≤ i ≤ n − 1. Let T = ∪ jT j be the irreducible
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decomposition. By repeatedly using Lemma 5.2.12, for every T j, we can
find lc centers Si

j of (X,∆)

X
g
d X

g
d X

g
d · · · g

d X d
∪ ∪ ∪ ∪
S0

j S1
j S2

j Sk
j

such that S0
j ⊂ T j, Si

j d Si+1
j is a B-birational map for every i, and

H0(T j,m(KT j + ∆T j)) ≃ H0(S0
j ,m(KS0

j
+ ∆S0

j
))

by the natural restriction map, where KT j +∆T j = (KX+∆)|T j and KS0
j
+∆S0

j
=

(KX + ∆)|S0
j
. Since there are only finitely many lc centers of (X,∆), we can

find p j < q j such that Sp j

j = Sq j

j and that Sp j

j , Sr
j for r = p j + 1, · · · , q j − 1.

Therefore, g induces a B-birational map

g̃ :
⨿

p j≤r≤q j−1

Sr
j d

⨿
p j≤r≤q j−1

Sr
j

for every j. Thus, we have an embedding

H0(T,OT(m(KT + ∆T))) ⊂
⊕

j

H0(Sp j

j ,m(K
S

pj
j
+ ∆

S
pj
j

)),

where K
S

pj
j
+ ∆

S
pj
j
= (KX + ∆)|

S
pj
j

for every j. First, by the following commu-

tative diagram (cf. Remark 5.2.11)

0 // H0(T,OT(m(KT + ∆T)))

(g∗)l

��

//
⊕

j H0(Sp j

j ,m(K
S

pj
j
+ ∆

S
pj
j

)))

(g̃∗)l=id
��

0 // H0(T,OT(m(KT + ∆T))) //
⊕

j H0(Sp j

j ,m(K
S

pj
j
+ ∆

S
pj
j

))),

we obtain (g∗)l = id on H0(T,m(KT + ∆T)). Next, by the following commu-
tative diagram (cf. Remark 5.2.11)

0 // H0(X,OX(m(KX + ∆)))

(g∗)l

��

// H0(T,OT(m(KT + ∆T)))

(g∗)l=id
��

0 // H0(X,OX(m(KX + ∆))) // H0(T,OT(m(KT + ∆T))),

we have that (g∗)l = id on H0(X,OX(m(KX + ∆))). Thus we obtain that
ρm(Bir(X,∆)) is a finite group by Burnside’s theorem (cf. [U, Theorem 14.9]).
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Case 2. x∆hy = 0.

We can construct the commutative diagram

X′

f ′
��

φ // X
f
��

Y′
ψ

// Y

with the following properties:

(a) φ : X′ → X is a log resolution of (X,∆).

(b) ψ : Y′ → Y is a resolution of Y.

(c) there is a simple normal crossing divisor Σ on Y′ such that f ′ is
smooth and Suppφ−1

∗ ∆ ∪ Exc(φ) is relatively normal crossing over
Y′ \ Σ.

(d) Supp f ′∗Σ and Supp f ′∗Σ ∪ Exc(φ) ∪ Suppφ−1
∗ ∆ are simple normal

crossing divisors on X′.

Then we have
KX′ + ∆X′ = f ′∗(KY′ + ∆Y′ +M),

where KX′ + ∆X′ = φ∗(KX + ∆), ∆Y′ is the discriminant divisor and M is the
moduli part of f ′ : (X′,∆X′)→ Y′. Note that

∆Y′ =
∑

(1 − cQ)Q,

where Q runs through all the prime divisors on Y′ and

cQ = sup{t ∈ Q |KX′ + ∆X′ + t f ′∗Q is sublc over the generic point of Q}.

We can further assume that Supp∆=1
X′ ⊂ Supp f ′∗∆=1

Y′ by taking more blow-
ups. We can check that every g ∈ Bir(X′,∆X′) = Bir(X,∆) induces gY′ ∈
Bir(Y′,∆Y′) which satisfies the following commutative diagram (see [Am4,
Theorem 0.2] for the subklt case, and [Ko2, Proposition 8.4.9 (3)] for the
sublc case).

X′

f ′
��

g //___

	

X′

f ′
��

Y′ gY′
//___ Y′
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Therefore, we have Supp g∗Y′∆
=1
Y′ = Supp∆=1

Y′ . This implies that

g∗Y′∆
=1
Y′ ≥ ∆=1

Y′ .

Thus there is an effective Cartier divisor Eg on X′ such that

g∗ f ′∗∆=1
Y′ + Eg ≥ f ′∗∆=1

Y′

and that the codimension of f ′(Eg) in Y′ is ≥ 2. We note the definitions
of g∗ and g∗Y′ (cf. Definition 5.2.6). Therefore, g ∈ Bir(X′,∆X′) induces an
automorphism g∗ of H0(X′,m′(KX′ +∆X′)− f ′∗∆=1

Y′ ) where m′ is a sufficiently
large and divisible positive integer m′. It is because

H0(X′,m′(KX′ + ∆X′) − g∗ f ′∗∆=1
Y′ )

⊂ H0(X′,m′(KX′ + ∆X′) − f ′∗∆=1
Y′ + Eg)

≃ H0(X′,m′(KX′ + ∆X′) − f ′∗∆=1
Y′ ).

Here, we used the facts that m′(KX′ +∆X′) = f ′∗(m′(KY′ +∆Y′ +M)) and that
f ′∗OX′(Eg) ≃ OY′ . Thus we have a natural inclusion

Bir(X′,∆X′) ⊂ B̃irm′

(
X′,∆X′ −

1
m′

f ′∗∆=1
Y′

)
.

Since KY′ + ∆Y′ +M is (nef and) big, for a sufficiently large and divisible
positive integer m′, we obtain an effective Cartier divisor Dm′ such that

m′(KY′ + ∆Y′ +M) ∼Z ∆=1
Y′ +Dm′ .

This means that

H0(X′,m′(KX′ + ∆X′) − f ′∗∆=1
Y′ ) , 0.

By considering the natural inclusion

Bir(X′,∆X′) ⊂ B̃irm′

(
X′,∆X′ −

1
m′

f ′∗∆=1
Y′

)
,

we can use the same arguments as in the proof of Theorem 5.3.11. Thus
we obtain the finiteness of B-pluricanonical representations. �

Remark 5.3.14. Although we did not explicitly state it, in Theorem 5.3.9,
we do not have to assume that X is connected. Similarly, we can prove
Theorems 5.3.11 and 5.3.13 without assuming that X is connected. For the
details, see Remark 5.2.10.
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We close this section with comments on [F2, Section 3] and [G2, Theorem
B]. In [F2, Section 3], we proved Theorem 5.3.13 for surfaces. There, we do
not need the notion of B̃-birational maps. It is mainly because Y′ in Case 2
in the proof of Theorem 5.3.13 is a curve if (X,∆) is not klt and KX+∆ is not
big. Thus, gY′ is an automorphism of Y′. In [G2, Theorem B], we proved
Theorem 5.3.13 under the assumption that KX + ∆ ∼Q 0. In that case, Case
1 in the proof of Theorem 5.3.13 is sufficient. Therefore, we do not need
the notion of B̃-birational maps in [G2].

5.4 On abundance conjecture for log canonical
pairs

In this section, we treat various applications of Theorem 5.1.1 on the abun-
dance conjecture for (semi) lc pairs (cf. Conjecture 5.1.2).

Let us introduce the notion of nef and log abundant Q-divisors.

Definition 5.4.1 (Nef and log abundant divisors). Let (X,∆) be a sublc pair.
A closed subvariety W of X is called an lc center if there exist a resolution
f : Y→ X and a divisor E on Y such that a(E,X,∆) = −1 and f (E) =W. AQ-
CartierQ-divisor D on X is called nef and log abundant with respect to (X,∆) if
and only if D is nef and abundant, and ν∗WD|W is nef and abundant for every
lc center W of the pair (X,∆), where νW : Wν → W is the normalization.
Let π : X→ S be a proper morphism onto a variety S. Then D is π-nef and
π-log abundant with respect to (X,∆) if and only if D is π-nef and π-abundant
and (ν∗WD|W)|Wν

η
is abundant, where Wν

η is the generic fiber of Wν → π(W).
We sometimes simply say that D is nef and log abundant over S.

The following theorem is one of the main theorems of this section
(cf. [F3, Theorem 0.1], [F15, Theorem 4.4]). For a relative version of Theo-
rem 5.4.2, see Theorem 5.4.12 below.

Theorem 5.4.2. Let (X,∆) be a projective lc pair. Assume that KX +∆ is nef and
log abundant. Then KX + ∆ is semi-ample.

Proof. By replacing (X,∆) with its dlt blow-up (cf. Theorem 1.1.6), we can
assume that (X,∆) is dlt and that KX + ∆ is nef and log abundant. We put
S = x∆y. Then (S,∆S), where KS+∆S = (KX +∆)|S, is an sdlt (n− 1)-fold and
KS+∆S is semi-ample by the induction on dimension and Proposition 5.4.3
below. By applying Fukuda’s theorem (cf. [F9, Theorem 1.1]), we obtain
that KX + ∆ is semi-ample. �
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We note that Proposition 5.4.3 is a key result in this paper. It heavily
depends on Theorem 5.1.1.

Proposition 5.4.3. Let (X,∆) be a projective slc pair. Let ν : Xν → X be the
normalization. Assume that KXν + Θ = ν∗(KX + ∆) is semi-ample. Then KX + ∆
is semi-ample.

Proof. The arguments in [F2, Section 4] work by Theorem 5.1.1. As we
pointed out in 5.2.13, we can freely use the results in [F2, Section 2]. The
finiteness of B-pluricanonical representations, which was only proved in
dimension ≤ 2 in [F2, Section 3], is now Theorem 5.1.1. Therefore, the
results in [F2, Section 4] hold in any dimension. �

By combining Proposition 5.4.3 with Theorem 5.4.2, we obtain an ob-
vious corollary (see also Corollary 5.4.13, Theorem 5.4.18, and Remark
5.4.19).

Corollary 5.4.4. Let (X,∆) be a projective slc pair and let ν : Xν → X be the
normalization. If KXν + Θ = ν∗(KX + ∆) is nef and log abundant, then KX + ∆ is
semi-ample.

We give one more corollary of Proposition 5.4.3.

Corollary 5.4.5. Let (X,∆) be a projective slc pair such that KX + ∆ is nef. Let
ν : Xν → X be the normalization. Assume that Xν is a toric variety. Then KX +∆
is semi-ample.

Proof. It is well known that every nef Q-Cartier Q-divisor on a projective
toric variety is semi-ample. Therefore, this corollary is obvious by Propo-
sition 5.4.3. �

Theorem 5.4.6. Let (X,∆) be a projective n-dimensional lc pair. Assume that the
abundance conjecture holds for projective dlt pairs in dimension ≤ n − 1. Then
KX + ∆ is semi-ample if and only if KX + ∆ is nef and abundant.

Proof. It is obvious that KX+∆ is nef and abundant if KX+∆ is semi-ample.
So, we show that KX + ∆ is semi-ample under the assumption that KX + ∆
is nef and abundant. By taking a dlt blow-up (cf. Theorem 1.1.6), we can
assume that (X,∆) is dlt. By the assumption, it is easy to see that KX + ∆ is
nef and log abundant. Therefore, by Theorem 5.4.2, we obtain that KX + ∆
is semi-ample. �

The following theorem is an easy consequence of the arguments in
[KeMaMc, Section 7] and Proposition 5.4.3 by the induction on dimension.
We will treat related topics in Section 5.5 more systematically.
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Theorem 5.4.7. Let (X,∆) be a projectiveQ-factorial dlt n-fold such that KX +∆
is nef. Assume that the abundance conjecture for projectiveQ-factorial klt pairs in
dimension ≤ n. We further assume that the minimal model program with ample
scaling terminates for projective Q-factorial klt pairs in dimension ≤ n. Then
KX + ∆ is semi-ample.

Proof. This follows from the arguments in [KeMaMc, Section 7] by using
the minimal model program with ample scaling with the aid of Proposition
5.4.3. Let H be a general effective sufficiently ample Cartier divisor on X.
We run the minimal model program on KX+∆−εx∆ywith scaling of H. We
note that KX+∆ is numerically trivial on the extremal ray in each step of the
above minimal model program if ε is sufficiently small by [B2, Proposition
3.2]. We also note that, by the induction on dimension, (KX + ∆)|x∆y is
semi-ample. For the details, see [KeMaMc, Section 7]. �

Remark 5.4.8. In the proof of Theorem 5.4.7, the abundance theorem and
the termination of the minimal model program with ample scaling for
projective Q-factorial klt pairs in dimension ≤ n − 1 are sufficient if KX +
∆−εx∆y is not pseudo-effective for every 0 < ε≪ 1 by [BCHM] (cf. 5.2.13).

The next theorem is an answer to Professor János Kollár’s question
for projective varieties. He was mainly interested in the case where f is
birational.

Theorem 5.4.9. Let f : X → Y be a projective morphism between projective
varieties. Let (X,∆) be an lc pair such that KX + ∆ is numerically trivial over Y.
Then KX + ∆ ∼Q,Y 0.

Proof. By replacing (X,∆) with its dlt blow-up (cf. Theorem 1.1.6), we can
assume that (X,∆) is a Q-factorial dlt pair. Let S = x∆y = ∪Si be the
irreducible decomposition. If S = 0, then KX + ∆ ∼Q,Y 0 by Kawamata’s
theorem (see [F7, Theorem 1.1]). It is because (KX +∆)|Xη ∼Q 0, where Xη is
the generic fiber of f , by Nakayama’s abundance theorem for klt pairs with
numerical trivial log canonical divisor (cf. [Nak, Chapter V. 4.9. Corollary]).
By the induction on dimension, we can assume that (KX + ∆)|Si ∼Q,Y 0 for
every i. Let H be a general effective sufficiently ampleQ-CartierQ-divisor
on Y such that xHy = 0. Then (X,∆ + f ∗H) is dlt, (KX + ∆ + f ∗H)|Si is semi-
ample for every i. By Proposition 5.4.3, (KX + ∆ + f ∗H)|S is semi-ample. By
applying [F9, Theorem 1.1], we obtain that KX + ∆ + f ∗H is f -semi-ample.
We note that (KX + ∆ + f ∗H)|Xη ∼Q 0 (see, for example, [G2, Theorem 1.2]).
Therefore, KX + ∆ is f -semi-ample. This means that KX + ∆ ∼Q,Y 0. �

Remark 5.4.10. In Theorem 5.4.9, if ∆ is an R-divisor, then we obtain
KX + ∆ ∼R,Y 0 by the same arguments as in Theorem 2.3.2.
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As a corollary, we obtain a relative version of the main theorem of [G2].

Corollary 5.4.11 (cf. [G2, Theorem 1.2]). Let f : X → Y be a projective mor-
phism from a projective slc pair (X,∆) to a (not necessarily irreducible) projective
variety Y. Assume that KX + ∆ is numerically trivial over Y. Then there is a
Q-Cartier Q-divisor D on Y such that KX + ∆ ∼Q f ∗D.

Proof. Let ν : Xν → X be the normalization such that KXν +Θ = ν∗(KX + ∆).
By Theorem 5.4.9, KXν +Θ ∼Q,Y 0. Let H be a general sufficiently ample Q-
divisor on Y such that KXν +Θ+ ν∗ f ∗H is semi-ample and that (X,∆+ f ∗H)
is slc. By Proposition 5.4.3, KX + ∆ + f ∗H is semi-ample. In particular,
KX + ∆ + f ∗H is f -semi-ample. Then we can find a Q-Cartier Q-divisor D
on Y such that KX + ∆ ∼Q f ∗D. �

By the same arguments as in the proof of Theorem 5.4.9 (resp. Corollary
5.4.11), we obtain the following theorem (resp. corollary), which is a relative
version of Theorem 5.4.2 (resp. Corollary 5.4.4).

Theorem 5.4.12. Let f : X → Y be a projective morphism between projective
varieties. Let (X,∆) be an lc pair such that KX + ∆ is f -nef and f -log abundant.
Then KX + ∆ is f -semi-ample.

Corollary 5.4.13. Let f : X → Y be a projective morphism from a projective slc
pair (X,∆) to a (not necessarily irreducible) projective variety Y. Let ν : Xν → X
be the normalization such that KXν + Θ = ν∗(KX + ∆). Assume that KXν + Θ is
nef and log abundant over Y. Then KX + ∆ is f -semi-ample.

5.4.1 Relative abundance conjecture

In this subsection, we make some remarks on the relative abundance con-
jecture.

Let us recall the minimal model conjecture.

Conjecture 5.4.14 (Minimal model conjecture). Let f : X→ Y be a projective
morphism between quasi-projective varieties and let (X,B) be an lc pair. If KX +B
is pseudo-effective over Y, then it has a minimal model over Y.

Conjecture 5.4.14 is very useful for the relative abundance conjecture by
Lemma 5.4.15 below.

Lemma 5.4.15. Assume that Conjecture 5.4.14 holds. Let f : X → Y be a
projective morphism between quasi-projective varieties such that (X,B) is lc and
that KX + B is f -nef. Let f : X → Y be any projective completion of f : X → Y.
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Then we can construct a projective morphism g : V → Y from a normal projective
variety V and an effectiveQ-divisor BV on V such that (V,BV) is aQ-factorial dlt
pair, KV + BV is g-nef, (V,BV)|g−1(Y) is a minimal model of (X,B) over Y, and no lc
center of (V,BV) is contained in g−1(Y \ Y).

In particular, if α : W → X, β : W → g−1(Y) is a common resolution of X and
g−1(Y), then α∗(KX + B) = β∗((KV + BV)|g−1(Y)). Therefore, KX + B is semi-ample
over Y if and only if so is KV + BV.

Proof. Let h : Z→ X be a resolution such that Supp h−1
∗ B∪Exc(h)∪h−1(X\X)

is a simple normal crossing divisor. We take a minimal model (V,BV) of
(Z, h−1

∗ B +
∑

E), where E runs through all the h-exceptional prime divisors
on Z with h(E) 1 X \ X, over Y. Then it is easy to see that (V,BV) has the
desired properties. �

We close this subsection with a remark on the relative abundance con-
jecture.

Remark 5.4.16 (Relative setting). We assume that Conjecture 5.4.14 holds.
Then, by Lemma 5.4.15, we can prove Theorems 5.4.9 and 5.4.12 for any
projective morphisms between (not necessarily quasi-projective) algebraic
varieties. We can also formulate and prove the relative version of Theorem
5.4.6 by Lemma 5.4.15 (cf. the proof of Theorem 5.4.9). We do not know how
to prove Corollary 5.4.11 and Corollary 5.4.13 for projective morphisms
between arbitrary algebraic varieties even when Conjecture 5.4.14 holds.
We think that there are no reasonable minimal model theories for reducible
varieties.

5.4.2 Miscellaneous applications
In this subsection, we collect some miscellaneous applications related to
the base point free theorem and the abundance conjecture.

The following theorem is the log canonical version of Fukuda’s result.

Theorem 5.4.17 (cf. [Fk5, Theorem 0.1]). Let (X,∆) be a projective lc pair.
Assume that KX + ∆ is numerically equivalent to some semi-ample Q-Cartier
Q-divisor D. Then KX + ∆ is semi-ample.

Proof. By taking a dlt blow-up (cf. Theorem 1.1.6), we can assume that
(X,∆) is dlt. By the induction on dimension and Proposition 5.4.3, we have
that (KX + ∆)|x∆y is semi-ample. By [F9, Theorem 1.1], we can prove the
semi-ampleness of KX + ∆. For the details, see the proof of [G2, Theorem
6.3]. �
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By using the deep result in [CKP], we have a slight generalization
of Theorem 5.4.17 and [CKP, Corollary 3]. It is also a generalization of
Theorem 5.4.2.

Theorem 5.4.18 (cf. [CKP, Corollary 3]). Let (X,∆) be a projective lc pair and
let D be a Q-Cartier Q-divisor on X such that D is nef and log abundant with
respect to (X,∆). Assume that KX + ∆ ≡ D. Then KX + ∆ is semi-ample.

Proof. By replacing (X,∆) with its dlt blow-up (cf. Theorem 1.1.6), we can
assume that (X,∆) is dlt. Let f : Y → X be a log resolution. We put
KY + ∆Y = f ∗(KX + ∆) + F with ∆Y = f −1

∗ ∆ +
∑

E where E runs through
all the f -exceptional prime divisors on Y. We note that F is effective and
f -exceptional. By [CKP, Corollary 1],

κ(X,KX + ∆) = κ(Y,KY + ∆Y) ≥ κ(Y, f ∗D + F) = κ(X,D).

By the assumption, κ(X,D) = ν(X,D) = ν(X,KX + ∆). On the other hand,
ν(X,KX+∆) ≥ κ(X,KX+∆) always holds. Therefore, κ(X,KX+∆) = ν(X,KX+
∆), that is, KX + ∆ is nef and abundant. By applying the above argument
to every lc center of (X,∆), we obtain that KX + ∆ is nef and log abundant.
Thus, by Theorem 5.4.2, we obtain that KX + ∆ is semi-ample. �

Remark 5.4.19. By the proof of Theorem 5.4.18, we see that we can weaken
the assumption as follows. Let (X,∆) be a projective lc pair. Assume that
KX+∆ is numerically equivalent to a nef and abundantQ-CartierQ-divisor
and that ν∗W((KX + ∆)|W) is numerically equivalent to a nef and abundant
Q-Cartier Q-divisor for every lc center W of (X,∆), where νW : Wν → W is
the normalization of W. Then KX + ∆ is semi-ample.

Theorem 5.4.20 is a generalization of Theorem 7.1.5. The proof is the
same as Theorem 7.1.5 once we adopt [F9, Theorem 1.1].

Theorem 5.4.20 (cf. [G2, Theorems 6.4, 6.5]). Let (X,∆) be a projective lc
pair such that −(KX + ∆) (resp. KX + ∆) is nef and abundant. Assume that
dim Nklt(X,∆) ≤ 1 where Nklt(X,∆) is the non-klt locus of the pair (X,∆).
Then −(KX + ∆) (resp. KX + ∆) is semi-ample.

Proof. Let T be the non-klt locus of (X,∆). By the same argument as in the
proof of Theorem 7.3.1, we can check that −(KX + ∆)|T (resp. (KX + ∆)|T)
is semi-ample. Therefore, −(KX + ∆) (resp. KX + ∆) is semi-ample by [F9,
Theorem 1.1]. �

Similarly, we can prove Theorem 5.4.21.
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Theorem 5.4.21. Let (X,∆) be a projective lc pair. Assume that −(KX + ∆) is
nef and abundant and that (KX + ∆)|W ≡ 0 for every lc center W of (X,∆). Then
−(KX + ∆) is semi-ample.

Proof. By taking a dlt blow-up (cf. Theorem 1.1.6), we can assume that
(X,∆) is dlt. By [G2, Theorem 1.2] (cf. Corollary 5.4.11), (KX + ∆)|x∆y is
semi-ample. Therefore, KX + ∆ is semi-ample by [F9, Theorem 1.1]. �

5.5 Non-vanishing, abundance, and minimal model
conjectures

In this final section, we discuss the relationship among various conjectures
in the minimal model program.

First, let us recall the weak non-vanishing conjecture for projective lc
pairs (cf. [B2, Conjecture 1.3]).

Conjecture 5.5.1 (Weak non-vanishing conjecture). Let (X,∆) be a projective
lc pair such that ∆ is anR-divisor. Assume that KX +∆ is pseudo-effective. Then
there exists an effective R-divisor D on X such that KX + ∆ ≡ D.

Conjecture 5.5.1 is known to be one of the most important problems in
the minimal model theory (cf. [B2]).

Remark 5.5.2. By [CKP, Theorem 1], KX + ∆ ≡ D ≥ 0 in Conjecture 5.5.1
means that there is an effective R-divisor D′ such that KX + ∆ ∼R D′.

By Remark 5.5.2 and Lemma 5.5.3 below, Conjecture 5.5.1 in dimension
≤ n is equivalent to Conjecture 1.3 of [B2] in dimension ≤ n with the aid of
dlt blow-ups (cf. Theorem 1.1.6).

Lemma 5.5.3. Assume that Conjecture 5.5.1 holds in dimension ≤ n. Let
f : X → Z be a projective morphism between quasi-projective varieties with
dim X = n. Let (X,∆) be an lc pair such that KX + ∆ is pseudo-effective over Z.
Then there exists an effective R-Cartier R-divisor M on X such that KX +∆ ∼R,Z
M.

Proof. Apply Conjecture 5.5.1 and Remark 5.5.2 to the generic fiber of f .
Then, by [BCHM, Lemma 3.2.1], we obtain M with the required properties.

�

Before we discuss the main result of this section, we give a remark on
Birkar’s paper [B2].
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Remark 5.5.4 (Absolute versus relative). Let f : X → Z be a projective
morphism between projective varieties. Let (X,B) be a Q-factorial dlt pair
and let (X,B+C) be an lc pair such that C ≥ 0 and that KX+B+C is nef over
Z. Let H be a very ample Cartier divisor on Z. Let D be a general member
of |2(2 dim X + 1)H|. In this situation, (X,B + 1

2 f ∗D) is dlt, (X,B + 1
2 f ∗D + C)

is lc, and KX + B + 1
2 f ∗D + C is nef by Kawamata’s bound on the length of

extremal rays. The minimal model program on KX +B+ 1
2 f ∗D with scaling

of C is the minimal model program on KX + B over Z with scaling of C. By
this observation, the arguments in [B2] work without appealing relative
settings if the considered varieties are projective.

The following theorem is the main theorem of this section.

Theorem 5.5.5. The abundance theorem for projective klt pairs in dimension ≤ n
and Conjecture 5.5.1 for projective Q-factorial dlt pairs in dimension ≤ n imply
the abundance theorem for projective lc pairs in dimension ≤ n.

Proof. Let (X,∆) be an n-dimensional projective lc pair such that KX + ∆
is nef. As we explained in 5.2.13, by [B2, Theorems 1.4, 1.5], the minimal
model program with ample scaling terminates for projectiveQ-factorial klt
pairs in dimension ≤ n. Moreover, we can assume that (X,∆) is a projective
Q-factorial dlt pair by taking a dlt blow-up (cf. Theorem 1.1.6). Thus, by
Theorem 5.4.7, we obtain the desired result. �

The final result is on a generalized abundance conjecture formulated
by Nakayama’s numerical Kodaira dimension κσ. For the details of κσ, see
[Nak] (see also [Leh2]).

Corollary 5.5.6 (Generalized abundance conjecture). Assume that the abun-
dance conjecture for projective klt pairs in dimension≤ n and Conjecture 5.5.1 for
Q-factorial dlt pairs in dimension ≤ n. Let (X,∆) be an n-dimensional projective
lc pair. Then κ(X,KX + ∆) = κσ(X,KX + ∆).

Proof. We can assume that (X,∆) is a Q-factorial projective dlt pair by
replacing it with its dlt blow-up (cf. Theorem 1.1.6). Let H be a general
effective sufficiently ample Cartier divisor on X. We can run the minimal
model program with scaling of H by 5.2.13. Then we obtain a good minimal
model by Theorem 5.5.5 if KX + ∆ is pseudo-effective. When KX + ∆ is
not pseudo-effective, we have a Mori fiber space structure. In each step
of the minimal model program, κ and κσ are preserved. So, we obtain
κ(X,KX + ∆) = κσ(X,KX + ∆). �
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6
Images of log Fano and weak Fano varieties

6.1 Introduction

Let f : X→ Y be a smooth projective morphism between smooth projective
varieties defined over C. The following theorem is one of the main results
of this chapter.

Theorem 6.1.1 (cf. Theorem 6.4.6). If X is a weak Fano manifold, that is, −KX

is nef and big, then so is Y.

Our proof of Theorem 6.1.1 is Hodge theoretic. We do not need mod
p reduction arguments. More precisely, we obtain Theorem 6.1.1 as an
application of Kawamata’s positivity theorem (cf. [Ka8]). By the same
method, we can recover the well-known result on Fano manifolds.

Theorem 6.1.2 (cf. Theorem 6.4.8). If X is a Fano manifold, that is, −KX is
ample, then so is Y.

Our proof of Theorem 6.1.2 is completely different from the original
one by Kollár, Miyaoka, and Mori in [KoMiMo]. It is the first proof which
does not use mod p reduction arguments. We raise a conjecture on the
semi-ampleness of anti-canonical divisors.

Conjecture 6.1.3. If −KX is semi-ample, then so is −KY.

We reduce Conjecture 6.1.3 to another conjecture on canonical bundle
formulas and give affirmative answers to Conjecture 6.1.3 in some special
cases (cf. Remark 6.4.3 and Theorem 6.4.5). In this chapter, we obtain the
following theorem, which is a key result for the proof of Theorem 6.1.1 and
Theorem 6.1.2.
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Theorem 6.1.4 (cf. Theorem 6.4.2). If −KX is semi-ample, then −KY is nef.

We note that the proof of Theorem 6.1.4 is also an application of Kawa-
mata’s positivity theorem. We note that it is the first time that Theorem
6.1.4 is proved without mod p reduction arguments. The reader will rec-
ognize that Kawamata’s positivity theorem is very powerful. We can find
related topics in [Z] and [Dbook, Section 3.6]. Note that both of them
depend on mod p reduction arguments.

We summarize the contents of this chapter. Section 6.2 is a preliminary
section. We recall Kawamata’s positivity theorem (cf. Theorem 6.2.2) here.
In Section 6.3, we treat log Fano varieties with only kawamata log terminal
singularities. The result obtained in this section will be used in Section 6.4.
In Section 6.3, we also treat images of log Fano varieties by generically finite
surjective morphisms as an application of Lemma 3.1.1. Theorem 6.3.7 is
an answer to the question raised by Professor Karl Schwede (cf. [ScSm,
Remark 6.5]). In Section 6.4, we prove Theorem 6.1.1, Theorem 6.1.2,
and some related theorems. In Section 6.5, we give some comments and
questions on related topics. In the final section: Section 6.6, which is an
appendix, we give a mod p reduction approach to Theorem 6.1.1.

6.2 Kawamata’s semipositivity theorem

Definition 6.2.1 (Relative normal crossing divisors). Let f : X → Y be
a smooth surjective morphism between smooth varieties with connected
fibers and D =

∑
i Di a reduced divisor on X such that Dh = D, where Di

is a prime divisor for every i. We say that D is relatively normal crossing
if D satisfies the condition that for each closed point x ∈ X, there exits
an analytic open neighborhood U and u1, . . . , uk ∈ OX,x inducing a regular
system of parameter on f −1 f (x) at x, where k = dim f −1 f (x), such that
D ∩U = {u1 · · ·ul = 0} for some l with 0 ≤ l ≤ k.

Let us recall Kawamata’s positivity theorem in [Ka8]. It is the main
ingredient of this chapter.

Theorem 6.2.2 (Kawamata’s positivity theorem). Let f : X→ Y be a surjec-
tive morphism of smooth projective varieties with connected fibers. Let P =

∑
j P j

and Q =
∑

l Ql be simple normal crossing divisors on X and Y, respectively, such
that f −1(Q) ⊆ P and f is smooth over Y \Q. Let D =

∑
j d jP j be aQ-divisor (d j’s

may be negative or zero), which satisfies the following conditions:

(1) f : SuppDh → Y is relatively normal crossing over Y\Q and f (SuppDv) ⊆
Q,
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(2) d j < 1 unless codimY f (P j) ≥ 2,

(3) dimC(η) f∗O(p−Dq) ⊗OY C(η) = 1, where η is the generic point of Y, and

(4) KX +D ∼Q f ∗(KY + L) for some Q-divisor L on Y.

Let

f ∗(Ql) =
∑

j

wl jP j, where wl j > 0,

d̄ j =
d j + wl j − 1

wl j
if f (P j) = Ql,

δl = max{d̄ j| f (P j) = Ql},
∆0 =

∑
δlQl, and

M = L − ∆0.

Then M is nef. We sometimes call M (resp. ∆0) the moduli part (resp. discrimi-
nant part).

Remark 6.2.3. In Theorem 6.2.2, we note that δl can be characterized as
follows. If we put

cl = sup{t ∈ Q |KX +D + t f ∗Ql is lc over the generic point of Ql},

then δl = 1 − cl.

6.3 Log Fano varieties

The proof of the following theorem is essentially the same as [F1, Theorem
1.2]. We will use similar arguments in Section 6.4.

Theorem 6.3.1. Let f : X→ Y be a proper surjective morphism between normal
projective varieties with connected fibers. Let ∆ be an effective Q-divisor on X
such that (X,∆) is klt. Assume that −(KX + ∆ + ε f ∗H) is semi-ample, where ε
is a positive rational number and H is an ample Cartier divisor on Y. Then we
can find an effective Q-divisor ∆Y on Y such that (Y,∆Y) is klt and −(KY + ∆Y) is
ample. In particular, if KY is Q-Cartier, then −KY is big.

Proof. By replacing H with mH and ε with ε
m for some sufficiently large

positive integer m, we can assume that H is very ample and ε < 1. By
replacing H with a general member of |H|, we can further assume that
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(X,∆ + ε f ∗H) is klt. Let A be a general member of a free linear system
| −m(KX + ∆ + ε f ∗H)| such that (X,∆ + ε f ∗H + 1

mA) is klt and

KX + ∆ + ε f ∗H +
1
m

A ∼Q 0.

We put Γ = ∆ + ε f ∗H + 1
mA. Then we consider the following commutative

diagram:
X′ ν //

f ′

��

X
f
��

Y′ µ
// Y,

where

(i) X′ and Y′ are smooth projective varieties,

(ii) ν and µ are projective birational morphisms,

(iii) we put L = −KY′ and define a Q-divisor D on X′ as follows:

KX′ +D = ν∗(KX + Γ),

and

(iv) there are simple normal crossing divisors P on X′ and Q on Y′ which
satisfy the conditions (1) of Theorem 6.2.2 and there exists a set of
sufficiently small non-negative rational numbers {sl} such that µ∗H −∑

l slQl is ample.

We see that f ′ : X′ → Y′, D, and L satisfy the conditions (1), (2), and (4) in
Theorem 6.2.2. Now we check the condition (3) in Theorem 6.2.2. We put
h = f ◦ ν.

Claim 6.3.2. OY = h∗OX′(p−Dq)

Proof of Claim 6.3.2. Since (X,Γ) is klt, we see that p−Dq is effective and
ν-exceptional. Thus it holds that ν∗OX′(p−Dq) ≃ OX. Since f∗OX = OY, we
have OY = h∗OX′(p−Dq). �

By Claim 6.3.2, we see that f ′ : X′ → Y′ and D satisfy the condition (3)
in Theorem 6.2.2 since µ is birational. If we take Q-divisors ∆0 and M on
Y′ as in Theorem 6.2.2, then

KX′ +D ∼Q f ′∗(KY′ +M + ∆0)

and M is nef. We have the following claim about ∆0.
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Claim 6.3.3. ∆+0 ≥ εµ∗H.

Proof of Claim 6.3.3. Since H is general, h∗H is reduced. We set h∗H =
∑

j Pk j .
Note that the coefficient of Pk j in D is ε for every j by the generality of H
and A. By the definition of d̄k j , it holds that

d̄k j = dk j = ε.

Thus we have ∆+0 ≥ εµ∗H. �

We decompose ε = ε′ + ε′′ such that ε′ and ε′′ are positive rational
numbers. Since M is nef, M + ε′(µ∗H − ∑

l slQl) is ample. Hence, there
exists an effectiveQ-divisor B such that M+ ε′(µ∗H−∑

l slQl) ∼Q B, (Y′,B+
ε′

∑
l slQl + ∆

+
0 + ε

′′µ∗H) is klt, and Supp(B + ε′
∑

l slQl + ∆
+
0 + ε

′′µ∗H − ∆−0 )
is simple normal crossing. If ε′ is a sufficiently small positive rational
number, then we see that

Supp(B + ε′
∑

l

slQl + ∆
+
0 + ε

′′µ∗H − ∆−0 )− = Supp ∆−0 .

We set

∆′0 = ∆
+
0 − εµ∗H and Ω′ = B + ε′

∑
l

slQl + ∆
′
0 + ε

′′µ∗H − ∆−0 .

It holds that
KY′ +Ω

′ ∼Q KY′ + L ∼Q 0.

By the following claim, µ∗Ω′ is effective.

Claim 6.3.4 (cf. Claim (B) in [F1]). µ∗∆−0 = 0.

Proof of Claim 6.3.4. Let ∆−0 = −
∑

k δlkQlk , where δlk < 0. If there exists k
and j such that p−d jq < wlk j, it holds that −d j + 1 ≤ wlk j since wlk j is an
integer. Then we obtain δlk ≥ 0. Thus, it holds that p−d jq ≥ wlk j for all k
and j. Therefore we have p−Dq ≥ f ′∗Qlk . Since OY′ = f ′∗OX′ , we see that
f ′∗OX′(p−Dq) ⊇ OY′(Qlk). By Claim 6.3.2, µ∗Qlk = 0. We finish the proof of
Claim 6.3.4. �

We put Ω = µ∗Ω′. Then we see that Ω is effective by Claim 6.3.4,

KY′ +Ω
′ = µ∗(KY +Ω), KY +Ω ∼Q 0, and Ω ≥ ε′′H.

Thus (Y,∆Y) is klt and−(KY+∆Y) ∼Q ε′′H is ample if we put∆Y = Ω−ε′′H ≥
0. We finish the proof of Theorem 6.3.1. �
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Remark 6.3.5. Let (X,B) be a projective klt pair. Then −(KX + B) is semi-
ample if and only if −(KX + B) is nef and abundant by [F7, Theorem 1.1].

The following corollary is obvious by Theorem 6.3.1.

Corollary 6.3.6 (cf. [PrSh, Theorem 2.9]). Let f : X→ Y be a proper surjective
morphism between normal projective varieties with connected fibers. Let ∆ be an
effectiveQ-divisor on X such that (X,∆) is klt and −(KX+∆) is ample. Then there
is an effectiveQ-divisor ∆Y on Y such that (Y,∆Y) is klt and −(KY +∆Y) is ample.

Moreover, we give an easy application of Lemma 3.1.1. Theorem 6.3.7
is an answer to the question raised by Karl Schwede (cf. [ScSm, Remark
6.5]).

Theorem 6.3.7. Let (X,∆) be a projective klt pair such that −(KX + ∆) is ample.
Let f : X → Y be a generically finite surjective morphism to a normal projective
variety Y. Then we can find an effectiveQ-divisor ∆Y on Y such that (Y,∆Y) is klt
and −(KY + ∆Y) is ample.

Proof. Without loss of generality, we can assume that ∆ is a Q-divisor by
perturbing the coefficients of ∆. Let H be a general very ample Cartier
divisor on Y and let ε be a sufficiently small positive rational number.
Then KX + ∆ + ε f ∗H is anti-ample and (X,∆ + ε f ∗H) is klt. We can take
an effective Q-divisor Θ on X such that mΘ is a general member of the
free linear system | −m(KX + ∆ + ε f ∗H)|where m is a sufficiently large and
divisible integer. Then

KX + ∆ + ε f ∗H + Θ ∼Q 0.

Let δ be a positive rational number such that 0 < δ < ε. Then

KX + ∆ + (ε − δ) f ∗H + Θ ∼Q f ∗(−δH).

By Lemma 3.1.1, we can find an effective Q-divisor ∆Y on Y such that

KY + ∆Y ∼Q −δH

and that (Y,∆Y) is klt. We note that

−(KY + ∆Y) ∼Q δH

is ample. �

By combining Theorem 6.3.7 with Theorem 6.3.1, we can easily obtain
the following corollary.
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Corollary 6.3.8. Let (X,∆) be a projective klt pair such that −(KX +∆) is ample.
Let f : X → Y be a projective surjective morphism onto a normal projective
variety Y. Then we can find an effectiveQ-divisor ∆Y on Y such that (Y,∆Y) is klt
and −(KY + ∆Y) is ample.

We close this section with an easy corollary of Theorem 6.3.1.

Corollary 6.3.9. Let (X,∆) be a projective klt pair such that −(KX + ∆) is semi-
ample. Let n be a positive integer such that n(KX +∆) is Cartier. Then there is an
effective Q-divisor ∆Y on

Y = Proj
⊕
m≥0

H0(X,OX(−mn(KX + ∆)))

such that (Y,∆Y) is klt and −(KY + ∆Y) is ample.

Proof. By definition, Y is a normal projective variety and there is a projective
surjective morphism f : X → Y with connected fibers such that −(KX +
∆) ∼Q f ∗H, where H is an ample Q-Cartier Q-divisor on Y. Then we can
apply Theorem 6.3.1. �

6.4 Fano and weak Fano manifolds

In this section, we apply Kawamata’s positivity theorem to smooth projec-
tive morphisms between smooth projective varieties.

We note that the statement of the following theorem is weaker than
[Dbook, Corollary 3.15 (a)]. However, the proof of Theorem 6.4.2 has
potential for further generalizations. We describe it in details.

First, we give a remark on the Stein factorization. We will use Lemma
6.4.1 in this section See also Remark 6.5.3 below.

Lemma 6.4.1 (Stein factorization). Let f : X → Y be a smooth projective
morphism between smooth varieties. Let

f : X h−→ Z
g−→ Y

be the Stein factorization. Then g : Z → Y is étale. Therefore, h : X → Z is a
smooth projective morphism between smooth varieties with connected fibers.

Proof. By assumption, Ri f∗OX is locally free and

Ri f∗OX ⊗ C(y) ≃ Hi(Xy,OXy)
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for every i and any y ∈ Y. By definition, Z = SpecY f∗OX. Since g∗OZ ≃ f∗OX

is locally free, g is flat. By construction,

Zy = SpecH0(Xy,OXy)

consists of n copies of SpecC for any y ∈ Y, where n is the rank of f∗OX.
Therefore, g is unramified. This implies that g is étale. Thus, Z is a smooth
variety and h : X→ Z is a smooth morphism with connected fibers. �

Theorem 6.4.2 (cf. [Dbook, Corollary 3.15 (a)]). Let f : X → Y be a smooth
projective morphism between smooth projective varieties with connected fibers. If
−KX is semi-ample, then −KY is nef.

Proof. Let C be an integral curve on Y. Let A be a general member of the
free linear system | − mKX|. Then there is a non-empty Zariski open set U
of Y such that C ∩ U , ∅ and that A is smooth over U. By construction,
KX+

1
mA ∼Q 0. Let µ : Y′ → Y be a resolution such that µ is an isomorphism

over U and µ−1(Y \ U) is a simple normal crossing divisor on Y′. We
consider the following commutative diagram.

X̃ = X ×Y Y′
φ //

f̃
��

X

f
��

Y′
µ // Y

We note that f̃ : X̃ → Y′ is smooth. We write KY′ = µ∗KY + E. Then
SuppE = Exc(µ), where Exc(µ) is the exceptional locus of µ, and E is
effective. We put

KX̃ + D̃ = φ∗(KX +
1
m

A) ∼Q 0.

Then
D̃ = − f̃ ∗E + φ∗

1
m

A.

Note that KX̃ = φ∗KX + f̃ ∗E. We put U′ = µ−1(U). Then µ : U′ → U
is an isomorphism. Let ψ : X′ → X̃ be a resolution such that ψ is an
isomorphism over f̃ −1(U′) and that SuppA′ ∪ Supp f ′−1(Y′ \U′) is a simple
normal crossing divisor, where A′ is the strict transform of A on X′ and
f ′ = f̃ ◦ ψ : X′ → Y′. We define

KX′ +D = ψ∗(KX̃ + D̃) ∼Q 0.

We can write
KX′ +D = f ′∗(KY′ + ∆0 +M)
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as in Kawamata’s positivity theorem (see Theorem 6.2.2). We put E =∑
i eiEi, where Ei is a prime divisor for every i and Ei , E j for i , j. The

coefficient of Ei in ∆0 is 1 − ci, where

ci = sup{t ∈ Q |KX′ +D + t f ′∗Ei is lc over the generic point of Ei}.

By construction,

ci = sup{t ∈ Q |KX̃ + D̃ + t f̃ ∗Ei is lc over the generic point of Ei}.

Since
D̃ = − f̃ ∗E + φ∗

1
m

A,

and φ∗ 1
mA is effective, we can write ci = ei + ai for some ai ∈ Q with ai ≤ 1.

Thus, we have 1− ci = 1− ei − ai. Therefore, the coefficient of Ei in E+∆0 is

ei + 1 − ei − ai = 1 − ai ≥ 0.

So, we can see that E + ∆0 is effective. Since KY′ + ∆0 + M ∼Q 0 and
KY′ = µ∗KY + E, we have

−µ∗KY = −KY′ + E ∼Q E + ∆0 +M.

Let C′ be the strict transform of C on Y′. Then

C · (−KY) = C′ · (−µ∗KY)
= C′ · (E + ∆0 +M) ≥ 0.

It is because M is nef and Supp(E+∆0) ⊂ Y′ \U′. Therefore, −KY is nef. �

We give a very important remark on Theorem 6.4.2.

Remark 6.4.3 (Semi-ampleness of −KY). We use the same notation as in
Theorem 6.4.2 and its proof. It is conjectured that the moduli part M is
semi-ample (see, for example [Am4, 0. Introduction]). Some very special
cases of this conjecture were treated in [F5] before [Am4]. Unfortunately,
the results in [F5] are useless for our purposes here. If this semi-ampleness
conjecture is solved, then we will obtain that −KY is semi-ample.

Let y ∈ Y be an arbitrary point. We can choose A such that y ∈ U. Since

−µ∗KY ∼Q M + E + ∆0,

E+∆0 is effective, and Supp(E+∆0) ⊂ Y′ \U′, we can find a positive integer
m and an effective Cartier divisor D on Y such that −mKY ∼ D and that
y < SuppD. It implies that −KY is semi-ample.
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By [Ka7], M is semi-ample if dim Y = dim X − 1. Therefore, −KY is
semi-ample when dim Y = dim X − 1.

In [Am5, Theorem 3.3], Ambro proved that M is nef and abundant. So,
if Y is a surface, then we can check that −KY is semi-ample as follows. If
ν(Y′,M) = κ(Y′,M) = 0 or 1, then M is semi-ample. Therefore, we can
apply the same argument as above. If ν(Y′,M) = κ(Y′,M) = 2, then M is
big. Since

−µ∗KY ∼Q M + E + ∆0

and E + ∆0 is effective, −µ∗KY is big. Therefore, −KY is nef and big. In
this case, −KY is semi-ample by the Kawamata–Shokurov base point free
theorem. Anyway, for an arbitrary point y ∈ Y, we can always find a
positive integer m and an effective Cartier divisor D on Y such that−mKY ∼
D and that y < SuppD. It means that −KY is semi-ample.

In the end, in Theorem 6.4.2, −KY is semi-ample if dim Y ≤ 2. By com-
bining the above results, we know that−KY is semi-ample when dim X ≤ 4.
We conjecture that −KY is semi-ample if −KX is semi-ample without any
assumptions on dimensions.

Remark 6.4.4. In Remark 6.4.3, we used Ambro’s results in [Am4] and
[Am5]. When we investigate the moduli part M on Y by the theory of
variations of Hodge structures, we note the following construction. Let
π : V → X be a cyclic cover associated to m(KX +

1
mA) ∼ 0. In this case, π

is a finite cyclic cover which is ramified only along SuppA. Since SuppA
is relatively normal crossing over U, we can construct a simultaneous res-
olution f ◦ π : V → Y and make the union of the exceptional locus and
the inverse image of SuppA a simple normal crossing divisor and rela-
tively normal crossing over U by the canonical desingularization theorem.
Therefore, the moduli part M on X behaves well under pull-backs. It is a
very important remark.

The semi-ampleness of −KY is not so obvious even when −KX ∼Q 0.
The proof of the following theorem depends on some deep results on the
theory of variations of Hodge structures (cf. [Am5] and [F7]).

Theorem 6.4.5. Let f : X→ Y be a smooth projective morphism between smooth
projective varieties. Assume that −KX ∼Q 0. Then −KY is semi-ample.

Proof. By the Stein factorization (cf. Lemma 6.4.1), we can assume that f
has connected fibers. In this case, we can write

KX ∼Q f ∗(KY +M),
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where M is the moduli part. By [Am5, Theorem 3.3], we know that M is
nef and abundant. Therefore, −KY is nef and abundant. This implies that
−KY is semi-ample by [F7, Theorem 1.1]. �

The following theorem is one of the main results of this chapter. We
note that it was proved by Yasutake in a special case where f : X→ Y is a
Pn-bundle (cf. [Y]).

Theorem 6.4.6 (Weak Fano manifolds). Let f : X→ Y be a smooth projective
morphism between smooth projective varieties. If X is a weak Fano manifold, then
so is Y.

Proof. By taking the Stein factorization, we can assume that f has connected
fibers (cf. Lemma 6.4.1). By Theorem 6.4.2, −KY is nef since −KX is semi-
ample by the Kawamata–Shokurov base point free theorem. By Kodaira’s
lemma, we can find an effective Q-divisor ∆ on X such that (X,∆) is klt
and that −(KX + ∆) is ample. By Theorem 6.3.1, we can find an effective
Q-divisor ∆Y such that −(KY +∆Y) is ample. Therefore, −KY is big. So, −KY

is nef and big. This means that Y is a weak Fano manifold. �

The following example is due to Hiroshi Sato.

Example 6.4.7 (Sato). Let Σ be the fan in R3 whose rays are generated by

x1 = (1, 0, 1), x2 = (0, 1, 0), x3 = (−1, 3, 0), x4 = (0,−1, 0),
y1 = (0, 0, 1), y2 = (0, 0,−1),

and their maximal cones are

⟨x1, x2, y1⟩, ⟨x1, x2, y2⟩, ⟨x2, x3, y1⟩, ⟨x2, x3, y2⟩,
⟨x3, x4, y1⟩, ⟨x3, x4, y2⟩, ⟨x4, x1, y1⟩, ⟨x4, x1, y2⟩.

Let ∆ be the fan obtained from Σ by successive star subdivisions along the
rays spanned by

z1 = x2 + y1 = (0, 1, 1)

and
z2 = x2 + z1 = 2x2 + y1 = (0, 2, 1).

We see that V = X(Σ), the toric threefold corresponding to the fan Σ with
respect to the lattice Z3 ⊂ R3, is a P1-bundle over Y = PP1(OP1 ⊕ OP1(3)).
We note that the P1-bundle structure V → Y is induced by the projection
Z3 → Z2 : (x, y, z) 7→ (x, y). The toric variety X = X(∆) corresponding to
the fan ∆was obtained by successive blow-ups from V. We can check that
X is a three-dimensional toric weak Fano manifold and that the induced
morphism f : X → Y is a flat morphism onto Y since every fiber of f is
one-dimensional. It is easy to see that −KY is big but not nef.
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Therefore, if f is only flat, then −KY is not always nef even when X is a
weak Fano manifold.

Let us give a new proof of the well-known theorem by Kollár, Miyaoka,
and Mori (cf. [KoMiMo]). We note that Y is not always Fano if f is only
flat. There exists an example in [W].

Theorem 6.4.8 (cf. [KoMiMo, Corollary 2.9]). Let f : X → Y be a smooth
projective morphism between smooth projective varieties. If X is a Fano manifold,
then so is Y.

Proof. By taking the Stein factorization, we can assume that f has connected
fibers (cf. Lemma 6.4.1). By Theorem 6.4.6, −KY is nef and big. Therefore,
−KY is semi-ample by the Kawamata–Shokurov base point free theorem.
Thus, it is sufficient to see that C · (−KY) > 0 for every integral curve C on
Y. Let C be an integral curve C on Y. We take a general very ample divisor
H on Y. Let ε be a small positive rational number. Then KX + ε f ∗H is anti-
ample. Let A be a general member of the free linear system |−m(KX+ε f ∗H)|.
We can assume that there is a non-empty Zariski open set U of Y such that
H is smooth on U, Supp(A + f ∗H) is simple normal crossing on f −1(U),
SuppA is smooth over U, and C ∩ H ∩ U , ∅. Apply the same arguments
as in the proof of Theorem 6.4.2 to

KX + ε f ∗H +
1
m

A ∼Q 0.

Then we obtain a projective birational morphism µ : Y′ → Y from a smooth
projective variety Y′ such that µ is an isomorphism over U and Q-divisors
∆0 and M on Y′ as before. By construction, ∆0 contains εH′, where H′ is
the strict transform of H on Y′ (cf. the proof of Theorem 6.3.1). Therefore,
we have

C · (−KY) = C′ · (E + ∆0 +M) > 0

as in the proof of Theorem 6.4.2. Thus, −KY is ample. �

We can prove the following theorem by the same arguments. It is a
generalization of Theorem 6.4.8.

Theorem 6.4.9. Let f : X→ Y be a smooth projective morphism between smooth
projective varieties. Let H be an ample Cartier divisor on Y. Assume that
−(KX + ε f ∗H) is semi-ample for some positive rational number ε. Then −KY is
ample, that is, Y is a Fano manifold.

Proof. By Lemma 6.4.1, we can assume that f has connected fibers. By
Theorem 6.3.1, we see that −KY is big. By the proof of Theorem 6.4.8,
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we can see that C · (−KY) > 0 for every integral curve C on Y. By the
Kawamata–Shokurov base point free theorem, −KY is semi-ample. Thus,
−KY is ample. �

6.5 Comments and Questions

In this section, we will work over an algebraically closed field k of arbitrary
characteristic. We denote the characteristic of k by chark.

6.5.1. Let f : X → Y be a smooth projective morphism between smooth
projective varieties defined over k.

(A) If −KX is ample, that is, X is Fano, then so is −KY.

It was obtained by Kollár, Miyaoka, and Mori in [KoMiMo]. Their proof
is an application of the deformation theory of morphisms from curves
invented by Mori. It needs mod p reduction arguments even when chark =
0. In the case chark = 0, we gave a Hodge theoretic proof without using
mod p reduction arguments in Theorem 6.4.8.

(N) If −KX is nef, then so is −KY.

This result can be proved by the same method as in [KoMiMo] (cf. [Miy],
[Z], and [Dbook, Corollary 3.15 (a)]). In the case chark = 0, we do not know
whether we can prove it without mod p reduction arguments or not.

(NB) If −KX is nef and big, that is, X is weak Fano, then so is −KY when
chark = 0.

It was proved in Theorem 6.4.6. We do not know whether this statement
holds true or not in the case chark > 0. See also Section 6.6: Appendix.

(SA) If −KX is semi-ample, is −KY semi-ample?

We have only some partial answers to this question. For details, see Remark
6.4.3 and Theorem 6.4.5. In the case chark = 0, we note that −K is semi-
ample if and only if −K is nef and abundant (see Remark 6.3.5).

(B) If −KX is big, is −KY big?

The following example gives a negative answer to this question.
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Example 6.5.2. Let E ⊂ P2 be a smooth cubic curve. We consider f : X =
PE(OE ⊕ OE(1)) → E = Y. Then, we see that −KX is big. However, −KY is
not big since E is a smooth elliptic curve.

Anyway, it seems to be difficult to construct nontrivial examples. It is
because the smoothness of f is a very strong condition.

We close this section with a remark on Lemma 6.4.1. It may be indis-
pensable when k , C.

Remark 6.5.3. Lemma 6.4.1 holds true even when k , C. We can check
it as follows. By the proof of Lemma 6.4.1, it is sufficient to see that f∗OX

is locally free and f∗OX ⊗ k(y) ≃ H0(Xy,OXy) for every closed point y ∈ Y.
Without loss of generality, we can assume that Y is affine. Let us check that
the natural map

f∗OX ⊗ k(y)→ H0(Xy,OXy)

is surjective for every y ∈ Y. We take an arbitrary closed point y ∈ Y. We
can replace Y with SpecOY,y. Let my be the maximal ideal corresponding
to y ∈ Y. We note that f∗OX ⊗ k(y) ≃ ( f∗OX)∧y ⊗ k(y), where ( f∗OX)∧y is the
formal completion of f∗OX at y. By the theorem on formal functions (cf. [H,
Theorem 11.1]), we have

( f∗OX)∧y ≃ lim
←−

H0(Xn,OXn),

where Xn = X ×Y SpecOY,y/mn
y. Therefore, we can see that

( f∗OX)∧y ⊗ k(y)→ H0(Xy,OXy)

is surjective. It is because H0(Xyi,OXyi) = k for every i, where Xy =
⨿

i Xyi is
the irreducible decomposition of a smooth variety Xy. By the base change
theorem (cf. [H, Theorem 12.11]), we obtain the desired results.

6.6 Appendix

In this appendix, we give another proof of Theorem 6.1.1 depending on
mod p reduction arguments. This proof is not related to Kawamata’s
positivity theorem.

First let us recall various results without proofs for the reader’s conve-
nience.

6.6.1 (Preliminary results). The following theorem was obtained by the
same way as in [KoMiMo].
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Theorem 6.6.2 ([Dbook, Corollary 3.15 (a)]). Let f : X → Y be a smooth
morphism of smooth projective varieties over an arbitrary algebraic closed field. If
−KX is nef, then so is −KY.

In [ScSm], Schwede and Smith established the following results on log
Fano varieties and global F-regular varieties. For various definitions and
details, see [ScSm] and [S]. See also [HWY] for related topics.

Theorem 6.6.3 (cf. [ScSm, Theorem 1.1]). Let X be a normal projective variety
over an F-finite field of prime characteristic. Suppose that X is globally F-regular.
Then there exists an effective Q-divisor ∆ on X such that −(KX +∆) is ample and
that (X,∆) is klt.

For the definition of klt in any characteristic, see [ScSm, Remark 4.2].

Theorem 6.6.4 (cf. [ScSm, Theorem 5.1]). Let X be a normal projective variety
defined over a filed of characteristic zero. Suppose that there exists an effective
Q-divisor ∆ on X such that −(KX +∆) is ample and that (X,∆) is klt. Then X has
globally F-regular type.

Theorem 6.6.5 (cf. [ScSm, Corollary 6.4]). Let f : X→ Y be a projective mor-
phism of normal projective varieties over an F-finite field of prime characteristic.
Suppose that f∗OX = OY. If X is a globally F-regular variety, then so is Y.

We can find the following lemma in [Liu, Proposition 3.7 (a)].

Lemma 6.6.6. Let C be a smooth projective curve over a field k, let K be an
extension field of k, and let D be a Cartier divisor on C. Suppose that π : CK :=
C ×k K→ C is the natural projection. Then degkD = degKπ

∗D.

By the above lemma, we see the following lemma.

Lemma 6.6.7. Let X be a projective variety over a field k, let K be an extension
field of k, and let D be a Cartier divisor on X. Suppose that π∗D is nef, where
π : XK := X ×k K→ X is the projection. Then D is nef.

Proof. We take a morphism f : C→ X from a smooth projective curve. We
consider the following commutative diagram:

CK

fK
��

πC //

	

C
f
��

XK

��

π //

	

X

��
SpecK // Speck
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where CK := C ×k K. By the assumption, degKπC
∗( f ∗D) ≥ 0. Hence

degk f ∗D ≥ 0 by Lemma 6.6.6. Thus D is nef. �

Let us start the proof of Theorem 6.1.1.

Proof of Theorem 6.1.1. First, we note that−KX is semi-ample by the Kawamata–
Shokurov base point free theorem and that −KY is nef by Theorem 6.6.2. It
is sufficient to show that (−KY)dim Y > 0. By the Stein factorization, we can
assume that f has connected fibers. We can take a finitely generated Z-
algebra A, a non-empty affine open set U ⊆ SpecA, and smooth morphisms
φ : X → U and ψ : Y → U such that

X

��?
??

??
??

?
F //Y

����
��
��
��

U

and F ≃ f over the generic point of U and that −KX is semi-ample. We
take a general closed point p ∈ U. Note that the residue field k := κ(p) of p
has positive characteristic p. Let fp : Xp → Yp be the fiber of F at p, and let
K be an algebraic closure of k. By Theorem 6.6.4, we may assume that Xp

is globally F-regular. Let fp : Xp → Yp be the base change of fp by SpecK,
where Xp := Xp×k K and Yp := Yp×k K. Since−KX is semi-ample, we see that
−KXp

is semi-ample. In particular, −KXp
is nef. Hence, we obtain that −KYp

is nef by Theorem 6.6.2. By Lemma 6.6.7, −KYp is nef. By Theorem 6.6.5,
Yp is globally F-regular. Hence −KYp is nef and big. Thus (−KYp)

dimY > 0.
Since ψ is flat, (−KY)dimY > 0. Therefore, −KY is nef and big. �
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7
Weak Fano varieties with log canonical

singularities

7.1 Introdution

We start by some basic definitions.

Definition 7.1.1. Let X be a normal projective variety and ∆ an effective
Q-Weil divisor on X. We say that (X,∆) is a weak log Fano pair if −(KX + ∆)
is nef and big. If ∆ = 0, then we simply say that X is a weak Fano variety.

There are questions whether the following fundamental properties hold
or not for a log canonical weak log Fano pair (X,∆) (cf. [Sh1, 2.6. Remark-
Corollary], [Pr, 11.1]):

(i) Semi-ampleness of −(KX + ∆).

(ii) Existence of Q-complements, i.e., existence of an effective Q-divisor
D such that KX + ∆ +D ∼Q 0 and (X,∆ +D) is lc.

(iii) Rational polyhedrality of the Kleiman-Mori cone NE(X).

It is easy to see that (i) implies (ii). In the case where (X,∆) is a klt pair, the
above three properties hold by the Kawamata-Shokurov base point free
theorem and the cone theorem (cf. [KaMaMa], [KoMo]). Shokurov proved
that these three properties hold for surfaces (cf. [Sh1, 2.5. Proposition]).

Among other things, we prove the following:

Theorem 7.1.2 (=Corollaries 7.3.3 and 7.4.5). Let X be a weak Fano 3-fold with
log canonical singularities. Then −KX is semi-ample and NE(X) is a rational
polyhedral cone.
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Theorem 7.1.3 (=Corollary 7.3.4 and Theorem 7.4.4). Let X be a weak Fano
variety with log canonical singularities. Suppose that any lc center of X is at most
1-dimensional. Then −KX is semi-ample and NE(X) is a rational polyhedral cone.

On the other hand, the above three properties do not hold for d-
dimensional log canonical weak log Fano pairs in general, where d ≥ 3.
Indeed, we give the following examples of plt weak log Fano pairs whose
anti-log canonical divisors are not semi-ample in Section 7.5 (in particular,
such examples of 3-dimensional weak log Fano plt pairs show the main
result of [Kar1] does not hold). It is well known that there exists a (d − 1)-
dimensional smooth projective variety S such that −KS is nef and is not
semi-ample (e.g. When d = 3, we take a very general 9-points blow up
of P2 as S). Let X0 be the cone over S with respect to some projectively
normal embedding S ⊂ PN. We take the blow-up X of X0 at its vertex. Let
E be the exceptional divisor of the blow-up. Then the pair (X,E) is a weak
log Fano plt pair such that −(KX +E) is not semi-ample. Moreover we give
an example of a log canonical weak log Fano pair withoutQ-complements
and an example whose Kleiman-Mori cone is not polyhedral.

We now outline the proof of semi-ampleness of−KX as in Theorem 7.1.2.
First, we take a birational morphism φ : Y→ X such that φ∗(KX) = KY + S,
(Y,S) is dlt and S is reduced. We set C := φ(S), which is the union of lc
centers of X. By an argument in the proof of the Kawamata-Shokurov base
point free theorem (Lemma 7.2.6), it is sufficient to prove that −(KY + S)|S
is semi-ample. Moreover we have only to prove that −KX|C is semi-ample
by the formula KX|C = (φ|S)∗((KY + S)|S).

It is not difficult to see semi-ampleness of the restriction of−KX on any lc
center of X. The main difficulty is how to extend semi-ampleness to C from
each 1-dimensional irreducible component Ci of C since the configuration
of Ci’s may be complicated. The key to overcome this difficulty is the
abundance theorem for 2-dimensional semi-divisorial log terminal pairs
([AFKM]). We decompose C = C′ ∪ C′′, where

Σ := {i| − KX|Ci ≡ 0}, C′ :=
∪
i∈Σ

Ci, and C′′ :=
∪
i<Σ

Ci.

Let S′ be the union of the irreducible components of S whose image on X
is contained in C′. We define the boundary DiffS′(S) on S′ by the formula
KY + S|S′ = KS′ + DiffS′(S). The pair (S′,DiffS′(S)) is known to be semi-
divisorial log terminal pair (sdlt, for short). Applying the abundance
theorem to the pair (S′,DiffS′(S)), we see that KS′ + DiffS′(S) is Q-linearly
trivial, namely, there is a non-zero integer m1 such that −m1(KY + S)|S′ =
−m1(KS′ +DiffS′(S)) ∼ 0. This shows that −m1KX|C′ ∼ 0. On the other hand,
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since −KX|C′′ is ample, we can take enough sections of H0(C′′,−m2KX|C′′)
for a sufficiently large and divisible m2 (Lemma 7.2.11). Thus, we can find
enough sections of H0(C,−mKX|C) for a sufficiently large and divisible m,
and can conclude that −KX|C is semi-ample.

To generalize this theorem to higher dimensional weak log Fano pairs,
we need the following theorem for arbitrary dimension:

Theorem 7.1.4 (Abundance theorem in a special case, [G2]). Let (X,∆) be
a d-dimensional projective sdlt pair whose KX + ∆ is numerically trivial. Then
KX + ∆ is Q-linearly trivial, i.e., there exists an n ∈N such that n(KX + ∆) ∼ 0.

The abundance conjecture is one of the most famous conjecture in the
minimal model program. This theorem is proved when d ≤ 3 by the works
of Fujita, Kawamata, Miyaoka, Abramovich, Fong, Kollár, McKernan, Keel,
Matsuki, and Fujino (cf. [AFKM], [F2]). Recently, this theorem for arbitrary
dimension is proved in [G2].

By the same way as in the 3-dimensional case, we see the following
theorem:

Theorem 7.1.5 (=Theorem 7.3.1). Let (X,∆) be a d-dimensional log canonical
weak log Fano pair. Suppose that dimNklt(X,∆) ≤ 1. Then −(KX + ∆) is
semi-ample.

We remark that by Examples 7.5.2 and 7.5.3, this condition for the
dimension of lc centers is the best possible.

In Section 7.4, by the cone theorem for normal varieties by Ambro and
Fujino (cf. Theorem 7.4.3), we derive the following:

Theorem 7.1.6 (=Theorem 7.4.4). Let (X,∆) be a d-dimensional log canonical
weak log Fano pair. Suppose that dimNklt(X,∆) ≤ 1. Then NE(X) is a rational
polyhedral cone.

Note that rational polyhedrality of NE(X) as in Theorem 7.1.2 is a corol-
lary of the above theorem. In Example 7.5.6, we also see that the Kleiman-
Mori cone is not rational polyhedral in general when dimNklt(X,∆) ≥ 2.

This chapter is based on the minimal model theory for log canonical
pairs developed by Ambro and Fujino ([Am1], [Am2], [Am6], [F12], [F14],
[F15]).

7.2 Preliminaries and Lemmas

In this section, we introduce notation and some lemmas for the proof of
Theorem 7.1.5 (=Theorem 7.3.1).
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The following theorem is very important as a generalization of vanish-
ing theorems (cf. [Am2, Theorem 3.1], [F14, Theorem 2.2], [F6, Theorem
2.38], [F12, Theorem 6.3]).

Theorem 7.2.1 (Torsion-freeness theorem). Let Y be a smooth variety and B a
boundary R-divisor such that SuppB is simple normal crossing. Let f : Y → X
be a projective morphism and L a Cartier divisor on Y such that H ∼R L− (KY+B)
is f -semi-ample. Then every associated prime of Rq f∗OY(L) is the generic point of
the f -image of some stratum of (Y,B) for any non-negative integer q.

The following theorem is proved by Fujino ([F12, Theorem 10.5]). We
include the proof for the reader’s convenience.

Theorem 7.2.2. Let X be a normal quasi-projective variety and ∆ an effective Q-
divisor on X such that KX + ∆ is Q-Cartier. Suppose that (X,∆) is lc. Then there
exists a projective birational morphism φ : Y→ X from a normal quasi-projective
variety with the following properties:

(i) Y is Q-factorial,

(ii) a(E,X,∆) = −1 for every φ-exceptional divisor E on Y,

(iii) for
Γ = φ−1

∗ ∆ +
∑

E:φ-exceptional

E,

it holds that (Y,Γ) is dlt and KY + Γ = φ∗(KX + ∆), and

(iv) Let {Ci} be any set of lc centers of (X,∆). Let W =
∪

Ci with a reduced
structure and S the union of the irreducible components of xΓy which are
mapped into W by φ. Then (φ|S)∗OS ≃ OW.

Proof. Let π : V → X be a resolution such that

(1) π−1(C) is a simple normal crossing divisor on V for every lc center C
of (X,∆), and

(2) π−1
∗ ∆∪Exc(π)∪π−1(Nklt(X,∆)) has a simple normal crossing support,

where Exc(π) is the exceptional set of π.

By Hironaka’s resolution theorem, we can assume that π is a composite of
blow-ups with centers of codimension at least two. Then there exists an
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effective π-exceptional Cartier divisor B on V such that −B is π-ample. We
put

F =
∑

a(E,X,∆)>−1,

E:π-exceptional

E and G =
∑

a(E,X,∆)=−1

E.

Let H be a sufficiently ample Cartier divisor on X such that −B + π∗H is
ample. We choose 0 < ε ≪ 1 such that εG − B + π∗(H) is ample. Since
−B + π∗(H) and εG − B + π∗(H) are ample, we can take effective Q-divisors
H1 and H2 on V with small coefficients such that G+F+π−1

∗ ∆+H1+H2 has a
simple normal crossing support and that−B+π∗H ∼Q H1, εG−B+π∗(H) ∼Q
H2. We take 0 < ν, µ ≪ 1 such that every divisor in F has a negative
coefficient in

M := ΓV − G − (1 − ν)F − π−1
∗ ∆

<1 + µB,

where ΓV is a Q-divisor on V such that KV + ΓV = π∗(KX + ∆). Now we
construct a log minimal model of (V,G + (1 − ν)F + π−1

∗ ∆
<1 + µH1) over X.

Since
G + (1 − ν)F + µH1 ∼Q (1 − εµ)G + (1 − ν)F + µH2,

it is sufficient to construct a log minimal model of (V, (1− εµ)G+ (1− ν)F+
π−1
∗ ∆

<1 + µH2) over X. Because (V, (1 − εµ)G + (1 − ν)F + π−1
∗ ∆

<1 + µH2) is
klt, we can get a log minimal model φ : Y→ X of (V, (1 − εµ)G + (1 − ν)F +
π−1
∗ ∆

<1 + µH2) over X by [BCHM, Theorem 1.2].
We show this Y satisfies the conditions of the theorem. For any divisor

D on V (appearing above), let D′ denote its strict transform on Y. We see
the following claim:

Claim 7.2.3. F′ = 0.

Proof of Claim 7.2.3. By the above construction,

N := KY + G′ + (1 − ν)F′ + φ−1
∗ ∆

<1 + µH′1

is φ-nef. Then

−M′ ∼Q,φ N − (KY + ΓY)

since (π∗H)′ = φ∗H, hence it is φ-nef. Since φ∗M′ = 0, we see that M′ is
effective by the negativity lemma (cf. [KoMo, Lemma 3.39]). Since every
divisor in F has a negative coefficient in M, F is contracted on Y. We finish
the proof of Claim 7.2.3. �
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From Claim 7.2.3, the discrepancy of every φ-exceptional divisor is
equal to −1. We see that Y satisfies the condition (ii). By the above
construction, (Y,Γ) is aQ-factorial dlt pair since so is (Y,G′+φ−1

∗ ∆
<1+µH1).

We see the condition (i). Because the support of KY+Γ−φ∗(KX+∆) coincide
with F′, we see the condition (iii).

Now, we show that Y and φ satisfy the condition (iv). Since we get Y
by the log minimal model program over X with scaling of some effective
divisor with respect to KV + G + (1 − ν)F + π−1

∗ ∆
<1 + µH1 (cf. [BCHM]), we

see that the rational map f : V d Y is a composition of (KV + G + (1 −
ν)F + π−1

∗ ∆
<1 + µH1)-negative divisorial contractions and log flips. Let Σ

be an lc center of (Y,Γ). Then it is also an lc center of (Y,Γ + µH′1). By the
negativity lemma, f : V d Y is an isomorphism around the generic point
of Σ. Therefore, if φ(Σ) ⊆ W, then Σ ⊆ S by the conditions (1) and (2) for
π : V → X. This means that no lc centers of (Y,Γ − S) are mapped into W
by φ. Let g : Z→ Y be a resolution such that

(a) Supp ΓZ is a simple normal crossing divisor, where ΓZ is defined by
KZ + ΓZ = g∗(KY + Γ), and

(b) g is an isomorphism over the generic point of any lc center of (Y,Γ).

Let SZ be the strict transform of S on Z. We consider the following short
exact sequence

0→ OZ(p−(Γ<1
Z )q − SZ)→ OZ(p−(Γ<1

Z )q) (∗)
→ OSZ(p−(Γ<1

Z )q)→ 0.

We note that

p−(Γ<1
Z )q − SZ − (KZ + {ΓZ} + Γ=1

Z − SZ) ∼Q −h∗(KX + ∆),

where h = φ ◦ g. Then we obtain

0→ h∗OZ(p−(Γ<1
Z )q − SZ)→ h∗OZ(p−(Γ<1

Z )q)→ h∗OSZ(p−(Γ<1
Z )q)

δ→ R1h∗OZ(p−(Γ<1
Z )q − SZ)→ · · · .

We claim the following:

Claim 7.2.4. δ is a zero map.

Proof of Claim 7.2.4. Let Σ be an lc center of (Z, {ΓZ} + Γ=1
Z − SZ). Then Σ is

some intersection of components of Γ=1
Z − SZ. By the conditions (a) and

(b), Γ=1
Z − SZ is the strict transform of xΓy − S. By this, the image of Σ by
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g is some intersection of components of xΓy − S. In particular, g(Σ) is an
lc center of (Y,Γ − S). Thus no lc centers of (Z, {ΓZ} + Γ=1

Z − SZ) are mapped
into W by h. Assume by contradiction that δ is not zero. Then there exists
a section s ∈ H0(U, h∗OSZ(p−(Γ<1

Z )q)) for some non-empty open set U ⊆ X
such that δ(s) , 0. Since Supp δ(s) , ∅, we can take an associated prime
x ∈ Supp δ(s). We see that x ∈ W since Supp(h∗OSZ(p−(Γ<1

Z )q)) is contained
in W. By Theorem 7.2.1, x is the generic point of the h-image of some
stratum of (Z, {ΓZ} + Γ=1

Z − SZ). Since h is a birational morphism, x is the
generic point of the h-image of some lc center of (Z, {ΓZ}+Γ=1

Z −SZ). Because
no lc centers of (Z, {ΓZ} + Γ=1

Z − SZ) are mapped into W by h, it holds that
x <W. But this contradicts the way of taking x.

�

Thus, we obtain

0→ IW → OX → h∗OSZ(p−(Γ<1
Z )q)→ 0,

where IW is the defining ideal sheaf of W since p−(Γ<1
Z )q is effective and

h-exceptional. This implies that OW ≃ h∗OSZ(p−(Γ<1
Z )q). By applying g∗ to

(∗), we obtain
0→ IS → OY → g∗OSZ(p−(Γ<1

Z )q)→ 0,

where IS is the defining ideal sheaf of S since p−(Γ<1
Z )q is effective and

g-exceptional. We note that

R1g∗OZ(p−(Γ<1
Z )q − SZ) = 0

by Theorem 7.2.1 since g is an isomorphism at the generic point of any stra-
tum of (Z, {ΓZ}+Γ=1

Z −SZ). Thus,OW ≃ h∗OSZ(p−(Γ<1
Z )q) ≃ φ∗g∗OSZ(p−(Γ<1

Z )q) ≃
φ∗OS. We finish the proof of Theorem 7.2.2. �

The following proposition is [Fk2, Proposition 2] (for the proof, see
[Fk1, Proof of Theorem 3] and [Ka5, Lemma 3]).

Proposition 7.2.5. Let (X,∆) be a proper dlt pair and L a nef Cartier divisor such
that aL − (KX + ∆) is nef and big for some a ∈ N. If Bs|mL| ∩ x∆y = ∅ for every
m ≫ 0, then |mL| is base point free for every m ≫ 0, where Bs|mL| is the base
locus of |mL|.

By this proposition, we derive the following lemma:

Lemma 7.2.6. Let (Y,Γ) be a Q-factorial weak log Fano dlt pair. Suppose that
−(KS + ΓS) is semi-ample, where S := xΓy and ΓS := DiffS(Γ). Then −(KY + Γ) is
semi-ample.
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Proof. We consider the exact sequence

0→ OY(−m(KY + Γ) − S)→ OY(−m(KY + Γ))→
→ OS(−m(KY + Γ)|S)→ 0

for m ≫ 0. By the Kawamata-Viehweg vanishing theorem (cf. [KaMaMa,
Theorem 1-2-5.], [KoMo, Theorem 2.70]), we have

H1(Y,OY(−m(KY + Γ) − S)) =
= H1(Y,OY(KY + Γ − S − (m + 1)(KX + Γ))) = {0},

since the pair (Y,Γ− S) is klt and −(KY + Γ) is nef and big. Thus, we get the
exact sequence

H0(Y,OY(−m(KY + Γ))→ H0(S,OS(−m(KY + Γ)|S))→ 0.

Therefore, we see that Bs| − m(KY + Γ)| ∩ S = ∅ for m ≫ 0 since −(KS + ∆S)
is semi-ample. Applying Proposition 7.2.5, we conclude that −(KY + Γ) is
semi-ample. �

We introduce the following definitions [GT, 1.1. Definition], [KoS,
Definitions 7.1 and 7.2]:

Definition 7.2.7. Suppose that R is a reduced excellent ring and R ⊆ S is a
reduced R-algebra which is finite as an R-module. We say that the extension
i : R ↪→ S is subintegral if one of the following equivalent conditions holds:

(a) (S
⊗

R k(p))red = k(p) for all p ∈ Spec(R).

(b) the induced map on the spectra is bijective and i induces trivial
residue field extensions.

Definition 7.2.8. Suppose that R is a reduced excellent ring. We say that R
is semi-normal if every subintegral extension R ↪→ S is an isomorphism.

A scheme X is called semi-normal at q ∈ X if the local ring at q is semi-
normal. If X is semi-normal at every point, we say that X is semi-normal.

Proposition 7.2.9 ([GT, 5.3. Corollary]). Let (R,m) be a local excellent ring.
Then R is semi-normal if and only if R̂ is semi-normal, where R̂ ism-adic comple-
tion of R.

Proposition 7.2.10 (cf. [Ko1, 7.2.2.1], [KoS, Remark 7.6]). Let C be a pure
1-dimensional proper reduced scheme of finite type over C, and q ∈ C a closed
point. Then C is semi-normal at q if and only if ÔC,q satisfies that
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(i) ÔC,q ≃ C[[X]], or

(ii) ÔC,q ≃ C[[X1,X2, · · · ,Xr]]/⟨XiX j|1 ≤ i , j ≤ r⟩ for some r ≥ 2, i.e., q ∈ C
is isomorphic to the coordinate axies in Cr at the origin as a formal germs.

Lemma 7.2.11. Let C = C1 ∪ C2 be a pure 1-dimensional proper semi-normal
reduced scheme of finite type over C, where C1 and C2 are pure 1-dimensional
reduced closed subschemes. Let D be a Q-Cartier divisor on C. Suppose that D1

is Q-linearly trivial and D2 is ample, where Di := D|Ci . Then D is semi-ample.

Proof. Let C1 ∩ C2 = {p1, . . . , pr}. We take m ≫ 0 which satisfies the follow-
ing:

(i) mD1 ∼ 0,

(ii) OC2(mD2)⊗(
∩

k,lmpk) is generated by global sections for all l ∈ {1, . . . , r},
and

(iii) OC2(mD2) ⊗ (
∩

kmpk) is generated by global sections,

where mpk is the ideal sheaf of pk on C2. We choose a nowhere vanishing
section s ∈ H0(C1,mD1). By (ii), we can take a section tl ∈ H0(C2,mD2)
which does not vanish at pl but vanishes at all the pk (k ∈ {1, . . . , r}, k , l)
for each l ∈ {1, . . . , r}. By multiplying suitable nonzero constants to tl, we
may assume that tl|pl = s|pl . We set t :=

∑
l tl ∈ H0(C2,mD2). Since C is

semi-normal, Proposition 7.2.10 implies that OC1∩C2 ≃
⊕r

l=1C(pl), where
C(pl) is the skyscraper sheaf C sitting at pl, by computations on ÔC,pl . Thus
we get the following exact sequence:

0→ OC(mD)→ OC1(mD1) ⊕ OC2(mD2)→
r⊕

l=1

C(pl)→ 0,

where the third arrow maps (s′, s′′) to ((s′ − s′′)|p1 , . . . , (s
′ − s′′)|pr). Hence s

and t patch together and give a section u of H0(C,mD).
Let p be any point of C. If p ∈ C1, then u does not vanish at p. We may

assume that p ∈ C2 \ C1. By (iii), we can take a section t′ ∈ H0(C2,mD2)
which does not vanish at p but vanishes at pl for all l ∈ {1, . . . , r}. The
zero section 0 ∈ H0(C1,mC1) and t′ patch together and give a section u′ of
H0(C,mD). By construction, the section u′ does not vanish at p. We finish
the proof of Lemma 7.2.11. �
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7.3 On semi-ampleness for weak Fano varieties

In this section, we prove Theorem 7.1.5 (=Theorem 7.3.1). As a corollary,
we see that the anti-canonical divisors of weak Fano 3-folds with log canon-
ical singularities are semi-ample. Moreover we derive semi-ampleness of
the anti-canonical divisors of log canonical weak Fano varieties whose lc
centers are at most 1-dimensional.

Theorem 7.3.1. Let (X,∆) be a d-dimensional log canonical weak log Fano pair.
Suppose that dimNklt(X,∆) ≤ 1. Then −(KX + ∆) is semi-ample.

Proof. By Theorem 7.2.2, we take a birational morphism φ : (Y,Γ)→ (X,∆)
as in the theorem. We set S := xΓy and C := φ(S), where we consider
the reduced scheme structures on S and C. We have only to prove that
−(KS + ΓS) = −(KY + Γ)|S is semi-ample from Lemma ??. By the formula
(KY + Γ)|S ∼Q (φ|S)∗((KX + ∆)|C), it suffices to show that −(KX + ∆)|C is semi-
ample. Arguing on each connected component of C, we may assume that
C is connected. Since dimNklt(X,∆) ≤ 1, it holds that dim C ≤ 1. When
dim C = 0, i.e., C is a closed point, then −(KX + ∆)|C ∼Q 0, in particular, is
semi-ample.
When dim C = 1, C is a pure 1-dimensional semi-normal scheme by [Am1,
Theorem 1.1] or [F12, Theorem 9.1]. Let C =

∪r
i=1 Ci, where Ci is an irre-

ducible component, and let D := −(KX + ∆)|C and Di := D|Ci . We set

Σ := {i| Di ≡ 0}, C′ :=
∪
i∈Σ

Ci, C′′ :=
∪
i<Σ

Ci.

Let S′ be the union of irreducible components of S whose image by φ is
contained in C′. We see that KS′ + ΓS′ ≡ 0, where ΓS′ := DiffS′(Γ). Thus
it holds that KS′ + ΓS′ ∼Q 0 by applying Theorem 7.1.4 to (S′,ΓS′). Since
(φ|S′)∗OS′ ≃ OC′ by the condition (iv) in Theorem 7.2.2, it holds that D|C′ ∼Q
0. We see that D|C′′ is ample since the restriction of D on any irreducible
component of C′′ is ample. By Lemma 7.2.11, we see that D = −(KX + ∆)|C
is semi-ample. We finish the proof of Theorem 7.3.1. �

Corollary 7.3.2. Let (X,∆) be a d-dimensional log canonical weak log Fano pair.
Suppose that dimNklt(X,∆) ≤ 1. Then R(X,−(KX + ∆)) is a finitely generated
algebra over C.

We immediately obtain the following corollaries:

Corollary 7.3.3. Let (X,∆) be a 3-dimensional log canonical weak log Fano pair.
Suppose that x∆y = 0. Then −(KX + ∆) is semi-ample and R(X,−(KX + ∆)) is a
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finitely generated algebra over C. In particular, if X is a weak Fano 3-fold with
log canonical singularities, then −KX is semi-ample and R(X,−KX) is a finitely
generated algebra over C.

Corollary 7.3.4. Let X is a log canonical weak Fano variety whose lc centers
are at most 1-dimensional, then −KX is semi-ample and R(X,−KX) is a finitely
generated algebra over C.

Remark 7.3.5. When dimNklt(X,∆) ≥ 2, −(KX + ∆) is not semi-ample
and R(X,−(KX + ∆)) is not a finitely generated algebra over C, in general
(Examples 7.5.2 and 7.5.3).

Remark 7.3.6. Based on Theorem 7.3.1, we expect the following statement:

Let (X,∆) be an lc pair and D a nef Cartier divisor. Suppose
there is a positive number a such that aD − (KX + ∆) is nef and
big. If it holds that dimNklt(X,∆) ≤ 1, then D is semi-ample.

However, there is a counterexample for this statement due to Zariski (cf.
[KaMaMa, Remark 3-1-2], [Z]).

This result of semi-ampleness induces that of topologies of weak Fano
varieties with log canonical singularities by Hacon–McKernan.

Corollary 7.3.7 ([HM, Corollary 1.4]). Let (X,∆) be an lc weak Fano pair.
Suppose that dimNklt(X,∆) ≤ 1. Then the map

π1(Nklt(X,∆))→ π1(X)

of fundamental groups is surjective. In particular, X is simply connected if
Nklt(X,∆) is simply connected.

7.4 On the Kleiman-Mori cone for weak Fano va-
rieties

In this section, we introduce the cone theorem for normal varieties by
Ambro and Fujino and prove polyhedrality of the Kleiman-Mori cone
for a log canonical weak Fano variety whose lc centers are at most 1-
dimensional. We use the notion of the scheme Nlc(X,∆), whose underlying
space is the set of non-log canonical singularities. For the scheme structure
on Nlc(X,∆), we refer [F12, Section 7], [F8] and [FST] in detail.
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Definition 7.4.1 ([F12, Definition 16.1]). Let X be a normal variety and ∆
an effective Q-divisor on X such that KX + ∆ is Q-Cartier. Let π : X→ S be
a projective morphism. We put

NE(X/S)Nlc(X,∆) = Im(NE(Nlc(X,∆)/S)→ NE(X/S)).

Definition 7.4.2 ([F12, Definition 16.2]). An extremal face of NE(X/S) is a
non-zero subcone F ⊂ NE(X/S) such that z, z′ ∈ F and z+z′ ∈ F implies that
z, z′ ∈ F. Equivalently, F = NE(X/S)∩H⊥ for someπ-nefR-divisor H, which
is called a supporting function of F. An extremal ray is a one-dimensional
extremal face.

(1) An extremal face F is called (KX + ∆)-negative if

F ∩NE(X/S)KX+∆≥0 = {0}.

(2) An extremal face F is called rational if we can choose aπ-nefQ-divisor
H as a support function of F.

(3) An extremal face F is called relatively ample at Nlc(X,∆) if

F ∩NE(X/S)Nlc(X,∆) = {0}.

Equivalently, H|Nlc(X,∆) is π|Nlc(X,∆)-ample for every supporting func-
tion H of F.

(4) An extremal face F is called contractible at Nlc(X,∆) if it has a rational
supporting function H such that H|Nlc(X,∆) is π|Nlc(X,∆)-semi-ample.

Theorem 7.4.3 (Cone theorem, cf. [F12, Theorem 16.5]). Let X be a normal
variety,∆ an effectiveQ-divisor on X such that KX+∆ isQ-Cartier, andπ : X→ S
a projective morphism. Then we have the following properties.

(1) NE(X/S) = NE(X/S)KX+∆≥0 + NE(X/S)Nlc(X,∆) +
∑

R j, where R j’s are the
(KX+∆)-negative extremal rays of NE(X/S) that are rational and relatively
ample at Nlc(X,∆). In particular, each R j is spanned by an integral curve
C j on X such that π(C j) is a point.

(2) Let H be a π-ample Q-divisor on X. Then there are only finitely many
R j’s included in (KX + ∆ + H)<0. In particular, the R j’s are discrete in the
half-space (KX + ∆)<0.
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(3) Let F be a (KX + ∆)-negative extremal face of NE(X/S) that is relatively
ample at Nlc(X,∆). Then F is a rational face. In particular, F is contractible
at Nlc(X,∆).

By the above theorem, we derive the following theorem:

Theorem 7.4.4. Let (X,∆) be a d-dimensional log canonical weak log Fano pair.
Suppose that dimNklt(X,∆) ≤ 1. Then NE(X) is a rational polyhedral cone.

Proof. Since −(KX + ∆) is nef and big, there exists an effective divisor B
satisfies the following: for any sufficiently small rational positive number
ε, there exists a general Q-ample divisor Aε such that

−(KX + ∆) ∼Q εB + Aε.

We fix a sufficiently small rational positive number ε and set A := Aε. We
also take a sufficiently small positive number δ. Thus Supp(Nlc(X,∆+εB+
δA)) is contained in the union of lc centers of (X,∆) and −(KX+∆+εB+δA)
is ample. By applying Theorem 7.4.3 to (X,∆ + εB + δA), We get

NE(X) = NE(X)Nlc(X,∆+εB+δA) +

m∑
j=1

R j for some m.

Now we see that NE(X)Nlc(X,∆+εB+δA) is polyhedral since dim Nlc(X,∆ +
εB) ≤ 1 by the assumption of dimNklt(X,∆) ≤ 1. We finish the proof of
Theorem 7.4.4.

�

Corollary 7.4.5. Let X be a weak Fano 3-fold with log canonical singularities.
Then the cone NE(X) is rational polyhedral.

Remark 7.4.6. When dimNklt(X,∆) ≥ 2, NE(X) is not polyhedral in general
(Example 7.5.6).

7.5 Examples

In this section, we construct examples of log canonical weak log Fano
pairs (X,∆) such that −(KX + ∆) is not semi-ample, (X,∆) does not have
Q-complements, or NE(X) is not polyhedral.
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Basic construction 7.5.1. Let S be a (d − 1)-dimensional smooth projective
variety such that −KS is nef and S ⊂ PN some projectively normal em-
bedding. Let X0 be the cone over S and ϕ : X → X0 the blow-up at the
vertex. Then the linear projection X0 d S from the vertex is decomposed
as follows:

X
ϕ

~~~~
~~
~~
~~ π

��?
??

??
??

?

X0 S.

This diagram is the restriction of the diagram for the projectionPN+1 d PN:

V := PPN (OPN ⊕ OPN (−1))
ϕ0

uukkkk
kkk

kkk
kkk

kk π0

))SS
SSS

SSS
SSS

SSS
S

PN+1 PN.

Moreover, the ϕ0-exceptional divisor is the tautological divisor of OPN ⊕
OPN (−1). Hence X ≃ PS(OS ⊕ OS(−H)), where H is a hyperplane section
on S ⊂ PN, and the ϕ-exceptional divisor E is isomorphic to S and is the
tautological divisor of OS ⊕ OS(−H).

By the canonical bundle formula, it holds that

KX = −2E + π∗(KS −H),

thus we have
−(KX + E) = π∗(−KS) + π∗H + E

We see π∗H + E is nef and big since OX(π∗(H) + E) ≃ ϕ∗OX0(1) and ϕ is
birational. Hence −(KX + E) is nef and big since π∗(−KS) is nef.

The above construction is inspired by that of Hacon and McKernan in
Lazić’s paper (cf. [Lazi, Theorem A.6]).

In the following examples, (X,E) is the plt weak log Fano pair given by
the above construction.

Example 7.5.2. This is an example of a d-dimensional plt weak log Fano
pair such that the anti-log canonical divisors are not semi-ample, where
d ≥ 3.
There exists a variety S such that −KS is nef and is not semi-ample (e.g. the
surface obtained by blowing up P2 at very general 9 points). We see that
−(KX + E) is not semi-ample since −(KX + E)|E = −KE is not semi-ample.
In particular, R(X,−(KX + E)) is not a finitely generated algebra over C by
−(KX + ∆) is nef and big.
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Example 7.5.3. This is an example of a log canonical weak Fano variety
such that the anti-canonical divisor is not semi-ample.
Let T be a k-dimensional smooth projective variety whose −KT is nef and A
a (d−k−1)-dimensional smooth projective manifold with KA ∼Q 0, where d
and k are integers satisfying d− 1 ≥ k ≥ 0. We set S = A×T. Let pT : S→ T
be the canonical projection. We see that KS = p∗T(KT). Let Ap be the fiber of
pT at a point p ∈ T, and φ : X→ Y the birational morphism with respect to
|ϕ∗(OX0(1)) ⊗ π∗p∗TOT(HT)|, where HT is some very ample divisor on T. We
claim the following:

Claim 7.5.4. It holds that:

(i) Y is a projective variety with log canonical singularities.

(ii) Exc(φ) = E and any exceptional curve of φ is contained in some Ap.

(iii) φ∗KY = KX + E.

(iv) φ(E) = T and (φ|E)∗KT = KE.

Proof of Claim 7.5.4. We see (ii) easily. Because −E|E is ample, E is not φ-
numerical trivial. Set φ∗KY = KX + E + aE for some a ∈ Q. Since KX + E is
φ-numerical trivial, we see a = 0. Thus we obtain (iii). (i) follows from (iii).
By (iii), φ(E) is an lc center. By (ϕ∗(OX0(1)) ⊗ π∗p∗TOT(HT))|E ≃ p∗TOT(HT), it
holds that φ|E = pT. Thus (iv) follows. �

If−KT is not semi-ample, then−KY is not semi-ample and k ≥ 2. Thus we
see that Y is a log canonical weak Fano variety with dimNklt(Y, 0) = k and
−KY is not semi-ample. In particular, R(X,−KX) is not a finitely generated
algebra over C by −KX is nef and big (cf. [Laza, Theorem 2.3.15]).

Example 7.5.5. We construct an example of a weak log Fano plt pair without
Q-complements.
Let S be the P1-bundle over an elliptic curve with respect to a non-split
vector bundle of degree 0 and rank 2. Then −KS is nef and S does not
have Q-complements (cf. [Sh1, 1.1. Example]). Thus (X,E) does not have
Q-complements by the adjunction formula −(KX + E)|E = −KE.

Example 7.5.6. We construct an example of a weak log Fano plt pair whose
Kleiman-Mori cone is not polyhedral. Let S be the surface obtained by
blowing up P2 at very general 9 points. It is well known that S has
infinitely many (−1)-curves {Ci}.
Then we see that the Kleiman-Mori cone NE(X) is not polyhedral. Indeed,
we have the following claim:
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Claim 7.5.7. R≥0[Ci] ⊆ NE(X) is an extremal ray with (KX + E).Ci = −1.
Moreover, it holds that R≥0[Ci] , R≥0[C j] (i , j).

Proof of Claim 7.5.7. We take a semi-ample line bundle Li on S such that Li

satisfies Li.Ci = 0 and Li.G > 0 for any pseudoeffective curve [G] ∈ NE(S)
such that [G] < R≥0[Ci]. We identify E with S. Let Li be a pullback of Li by
π and Fi := ϕ∗(OX0(1)) ⊗ Li. We show that R≥0[Ci] ⊆ NE(X) is an extremal
ray. Since (KX + E)|E ∼ KE, it holds that (KX + E).Ci = −1. By the cone
theorem for dlt pairs, there exist finitely many (KX + E)-negative extremal
rays Rk such that [Ci] − [D] ∈ ∑

Rk for some [D] ∈ NE(X)KX+E=0. It holds
that Fi.D = Fi.Rk = 0 for all k since Fi.Ci = 0 and Fi is a nef line bundle. We
see that, if an effective 1-cycle C on X satisfies Fi.C = 0, then C = αCi for
some α ≥ 0 by the construction of Fi. Thus, any generator of Rk is equal to
αkCi for some αk ≥ 0. Hence R≥0[Ci] ⊆ NE(X) is an extremal ray. It is clear
to see that R≥0[Ci] , R≥0[C j]. Thus the claim holds. �
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faiblement Kählérien compact, Invent. Math., 63 (1981), 187-223.

[CKP] F. Campana, V. Koziarz and M. Păun, Numerical character of the
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