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Translator’s remarks

This article is an English translation of notes by T. Mizutani on a theorem of

Thurston [3]. The notes include a construction which seems not quite well-known,

of a family of foliations of which the Godbillon-Vey class varies continuously. The

contents are kept as it was. Some apparent errors are corrected, while historical

comments are left original.

1. Introduction

Thurston constructed codimension-one foliations of S3 which are non-cobordant

and showed that there exists a surjective homomorphism from H3(BΓ1,Z) to R in

[2]. The homomorphism is given by the integration of the Godbillon-Vey form of

foliations over manifolds. The Godbillon-Vey forms are also defined for foliations

of codimension greater than one, and it has been conjectured that an analogue also

holds. A simple adaptation of constructions in codimension-one case does not work

in higher codimensional case, however, there still exists a surjective homomorphism

from H2n+1(BΓn,Z) to R. Indeed, Thurston showed the following

Theorem. For any r ∈ R, there exist a closed manifold W 2n+1 of dimension

(2n+ 1) and a foliation F of W of codimension n such that

gv(W,F) = r.

We give an outline of the proof after Thurston, omitting detailed calculations†3.

We remark that Heitsch recently extends Thurston’s theorem to show the existence
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of surjective homomorphisms from H2n+1(BΓn,Z) to Rs, where s ≥ 1 is a cer-

tain integer, by using the Godbillon-Vey class as well as other exotic characteristic

classes [7].

Finally we remark that this article is partly based on notes of Thurston’s lectures

taken by S. Morita†4 of Osaka City University.
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2. Godbillon-Vey form

Let (Wn+p,F) be a foliation of a smooth manifold Wn+p of codimension n. We

assume that F is transversely orientable. If F is locally defined by a system of 1-

forms {ω1, . . . , ωn} with the equation ω1 = · · · = ωn = 0, then there exists a global

n-form Ω such that Ω = kω1 ∧ · · · ∧ ωn locally holds, where k is a positive function

(it can be shown by partition of unity arguments). By the Frobenius theorem there

exists a 1-form α such that

dΩ = α ∧ Ω.

Note that the integrability of the distribution defined by ω1 = · · · = ωn = 0

is equivalent to the existence of such a 1-form α as above also by the Frobenius

theorem.

Definition 1. The differential form γ = α ∧ (dα)n is called the Godbillon-Vey

form. The cohomology class represented by γ is called the Godbillon-Vey class.

It is indeed known that γ is a closed (2n + 1)-form and that the cohomology

class represented by γ depends only on F but not on the choice of Ω and α [1].

Therefore, if W is a closed manifold of dimension (2n + 1), then the integration

of γ over W determines a real number, which we denote by gv(W,F) and call the

Godbillon-Vey characteristic.

3. A formula for foliated M-products

Let N and M be closed manifolds of dimension (n + 1) and n, respectively.

Suppose that W is a fiber bundle over N with fibers M . A foliation F of W of

codimension n which is transverse to fibers is called a foliated bundle. In particular

if W is a trivial bundle, then we call (W,F) a foliated M -product.

†4Professor emeritus of University of Tokyo and Tokyo Institute of Technology.
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Figure 1. the map mx

Let (W,F) be a foliated M -product. We denote by L(M) the Lie algebra of

smooth (of class C∞) vector fields on M . For x ∈ N , we will define a linear map

mx : TxN → L(M) as follows. Let πN : W = N×M → N and πM : W = N×M →
M be the projections. Given v ∈ TxN and y ∈ π−1

N (x)(∼= M), let ṽy be the unique

element of TyF such that πN∗(ṽy) = v. We set then mx(v)(y) = πM∗(ṽy). It is easy

to see that mx(v) is smooth if F is smooth. Next we introduce a Gel’fand-Fuchs

cocycle which we denote by β. We fix a Riemannian metric on M and let ω be the

volume form. Let X ∈ L(M) and denote by LX the Lie derivative with respect to

X. Then the function divX is defined by the equality

LXω = (divX)ω.

We define β by the formula

β(X1, X2, . . . , Xn+1) =

∫
M

(divX1) d(divX2) ∧ · · · ∧ d(divXn+1).

The cocycle β, homomorphism mx and the Godbillon-Vey characteristic are related

as follows.

Lemma 2 (Thurston, cf. [4], [5], [6], [8]). Let (Nn+1 × Mn,F) be a foliated M -

product. Then, we have

gv(N ×M,F) =

∫
N

β

(
mx

(
∂

∂x1

)
, . . . ,mx

(
∂

∂xn+1

))
dx1 ∧ · · · ∧ dxn+1

=

∫
N

(m∗
xβ)

(
∂

∂x1
, . . . ,

∂

∂xn+1

)
dx1 ∧ · · · ∧ dxn+1,

where x = (x1, . . . , xn+1) is a system of local coordinates on N .

4. Proof of Theorem and Construction of foliations

We will show the following theorem of Thurston.
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Theorem 3 (Thurston). For any r ∈ R, there exist a closed manifold W 2n+1 of

dimension (2n+ 1) and a foliation F of W of codimension n such that

gv(W,F) = r.

Corollary 4. There exists a surjective homomorphism from H2n+1(BΓn,Z) to R.

Thurston’s proof in the case where n = 1 appeared in [2]. We will explain an

outline of the proof in the case where n > 1 after Thurston. In the arguments,

W will be an Sn-bundle over Σ × Tn−1, where Σ is a closed hyperbolic surface

and (W,F) will be a foliated bundle. The strategy is as follows: we will construct

enough number of representations from SL(2;R)×Rn−1 to Diff(Sn), namely, actions

of SL(2;R)×Rn−1 on Sn. Then construct F on Γ×Zn−1\(H×Rn−1×Sn), where

H = {z = x +
√
−1y |x, y ∈ R, y > 0} is the Poincaré upper half plane and Γ is

a cocompact lattice of SL(2;R)/SO(2) such that Σ = Γ\H. Let sl(2;R) be the Lie

algebra of SL(2;R). We consider an action of SL(2;R) on Rn+1 = R2 × Rn−1 such

that the action on the R2 is the linear one and the one on Rn−1 is trivial. Then,

there is a homomorphism of Lie algebras

λn+1 : sl(2;R) → L(Rn+1).

Let (x1, x2) be the standard coordinates on R2 and e2 the Euler vector field. If we

introduce the polar coordinates (r, θ) on R2 \ {o}, then e2 = r
∂

∂r
. We trivialize

T (R2 \ {o}) by

{
r
∂

∂r
,
∂

∂θ

}
. We will extend r

∂

∂r
and

∂

∂θ
to the whole R2 by

the formulas e2 = r
∂

∂r
= x1 ∂

∂x1
+ x2 ∂

∂x2
and

∂

∂θ
= −x2 ∂

∂x1
+ x1 ∂

∂x2
. Let

a =

(
a11 a12
a21 a22

)
∈ sl(2;R). If we set b =

(
b1

b2

)
=

(
cos θ sin θ

− sin θ cos θ

)
a

(
cos θ

sin θ

)
, then

we can represent

λ2(a) = (a11x
1 + a12x

2)
∂

∂x1
+ (a21x

1 + a22x
2)

∂

∂x2

= b1r
∂

∂r
+ b2

∂

∂θ
= k(θ)e2 + ρ2(a)

on R2 \ {o}. Note that ρ2(a) is the projectivization of λ2. Indeed, by regarding

S1 as the set of oriented lines in R2 which pass through the origin, we obtain ρ2

from λ2. Note also that ρ2(a) is parallel to
∂

∂θ
and depends only on θ. We consider

the standard metric on R2. Then, div λ2(a) = 0 because a ∈ sl(2;R), and we have

k(θ) = −1

2
div ρ2(a). Therefore

λ2(a) = −1

2
div ρ2(a)e2 + ρ2(a).

Assume that n ≥ 2 and introduce the polar coordinates on the first factor of

(R2 \ {o})× Rn−1. Let (r, θ, x3, · · · , xn+1) be the natural coordinates and en+1 =
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r
∂

∂r
. We trivialize T ((R2 \ {o}) × Rn−1) by

{
en+1,

∂

∂θ
,

∂

∂x3
, . . . ,

∂

∂xn+1

}
. Then

we can represent λn+1(a) as

λn+1(a) = k(θ)en+1 + ρ̃2(a),

where ρ̃2(a) is parallel to
∂

∂θ
and depends only on θ. By the same reason as above,

k(θ) = −1

2
div ρ̃2(a). Therefore,

λn+1(a) = −1

2
div ρ̃2(a) en+1 + ρ̃2(a)

on (R2 \ {o})× Rn−1. Note that

(5)

 1) ρ̃2(a) is parallel to
∂

∂θ
and depends only on θ.

2) div ρ̃2(a) = div ρ2(a) and it depends only on θ.

We remark for later use that div ρ2(Y ) = −2 sin θ cos θ and div ρ2(Z) = − cos2 θ +

sin2 θ, where Y =

(
0 1
0 0

)
and Z =

1

2

(
1 0
0 −1

)
. We denote by Dl

t the round open

ball of radius t in Rl. Let ϵ ∈ (0, 1/2) and regard†5 Sn = (D2
1+ϵ × Sn−2) ∪ (S1 ×

Dn−1
1+ϵ ), where (r, θ, p) ∈ D2

1+ϵ × Sn−2 is identified with (θ, p/r) ∈ S1 × Dn−1
1+ϵ if

|r − 1| < ϵ. Let f i : Sn−2 → R be any C∞-functions, where 3 ≤ i ≤ n+ 1, and let

g be a function on R such that g(r) = 0 if r > 1− ϵ and g(r) = 1 if r < ϵ. We will

define σn+1 : sl(2;R)× Rn−1 → L(Sn) as follows. First let

U0 = D2
ϵ/2 × Sn−2,

U1 = {(r, θ, p) ∈ D2
1+ϵ × Sn−2 | r > ϵ/3}.

We then define σn+1 : sl(2;R)× Rn−1 → L(D2
1+ϵ × Sn−2) by

σn+1(a) =

λn+1(a), on U0,

−1

2
(div ρ2(a)) g · r

∂

∂r
+ ρ̃2(a), on U1,

a ∈ sl(2;R),

σn+1(ti) = f ig · r ∂

∂r
, 3 ≤ i ≤ n+ 1,

where Rn−1 is regarded as the Lie algebra of Rn−1 and {t3, . . . , tn+1} is the standard
basis for Rn−1, and the natural images of elements of sl(2;R) and Rn−1 in sl(2;R)×
Rn−1 are denoted by the same symbols by abuse of notation. Note that σn+1(a)

and σn+1(ti) are indeed tangent to D2
1+ϵ × Sn−2. Since σn+1(a) depends only on

θ and parallel to
∂

∂θ
on a neighborhood of ∂(D2

1+ϵ × Sn−2), and since σn+1(ti)

is independent of θ and vanishes outside D2
1 × Sn−2, these vector fields naturally

extends to Sn. By abuse of notations, we denote thus obtained mapping from

sl(2;R)×Rn−1 to L(Sn) again by σn+1. Then, by the property (5), σn+1 is indeed

†5The original construction makes use of joins instead of decomposing Sn. We modified the
construction for clarity.
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Figure 2. extension of σn+1(a)

a morphism of Lie algebras. Moreover, if a =

(
0 1
−1 0

)
then σn+1(a) = ρ̃2(a) =

− ∂

∂θ
. Therefore, the R-action generated by a is periodic and σn+1 induces a group

action of SL(2;R)×Rn−1 on Sn which we denote by σ̃n+1. We will equip the trivial

bundle SL(2;R) × Rn−1 × Sn → SL(2;R) × Rn−1 with a foliation†6 such that the

leaf L̃(g,u,w) which passes (g, u, w) ∈ SL(2;R)× Rn−1 × Sn is given by

L̃(g,u,w) = {(gh, u+ v, σ̃n+1(h, v)
−1w) | (h, v) ∈ SL(2;R)× Rn−1}.

Note that SL(2;R)×Rn−1 acts on SL(2;R)×Rn−1×Sn on the right by (g, u, w)(h, v) =

(gh, u + v, σ̃n+1(h, v)
−1w) and on the left by (h, v)(g, u, w) = (hg, v + u,w), re-

spectively. The foliation {L̃(g,u,w)} is invariant under the both actions. There-

fore, by first taking the quotient by SO(2) on the right, we obtain a foliated

Sn-bundle over H × Rn−1 which is in fact a foliated product as we will explain

below. Now let Γ be a cocompact lattice of SL(2;R)/SO(2), and take the quo-

tient of (SL(2;R) × Rn−1) ×
SO(2)

Sn ∼= H × Rn−1 × Sn by Γ × Zn−1 on the left.

Then we obtain a foliated Sn-bundle over Γ\H× Tn−1 of which the total space is

Γ\(SL(2;R)× Tn−1) ×
SO(2)

Sn. We denote by F thus obtained foliation.

A trivialization of the foliated Sn-bundle over H×Rn−1 is given as follows. We

denote by [g, u, w] the equivalence class represented by (g, u, w) ∈ SL(2;R)×Rn−1×

Sn. Let ι be an embedding of H into SL(2;R) given by ι(x+
√
−1y) =

(√
y x√

y

0 1√
y

)
.

We define F : H×Rn−1×Sn → (SL(2;R)×Rn−1) ×
SO(2)

Sn by F (z, u, w) = [ι(z), u, w].

Then, F is a diffeomorphism and the leaf Lw of F which passes (
√
−1, 0, w) ∈

H× Rn−1 × Sn is given by

Lw = {(z, u, σ̃n+1(ι(z), u)
−1w) | (z, u) ∈ H× Rn−1}.

†6We slightly modified the construction in view of [7], §5.
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Let (z, u) = (x, y, u3, . . . , un+1) be the natural coordinates on H× Rn−1. Then,

m(
√
−1,0)

(
∂

∂x

)
= −σn+1(Y ),

m(
√
−1,0)

(
∂

∂y

)
= −σn+1(Z),

m(
√
−1,0)

(
∂

∂ui

)
= −σn+1(ti),

where 3 ≤ i ≤ n + 1. In general, m(z,u) = σ̃n+1(ι(z), u)∗m(
√
−1,0). On the other

hand, if we set h = div

(
g · r ∂

∂r

)
= r

dg

dr
+ 2g then

1) h = 2 on the image of Sn−2 = {o} × Sn−2 in Sn = (D2
1+ϵ × Sn−2) ∪ (S1 ×

Dn−1
1+ϵ ).

2) h = 0 on S1 ×Dn−1
1+ϵ ⊂ Sn.

Therefore,

(m∗
(
√
−1,0)

β)

(
∂

∂x
,
∂

∂y
,

∂

∂u3
, . . . ,

∂

∂un+1

)
= (−1)n

(∫
r

(
1− 1

2
h

)2

hn−2dh

)(∫
θ

div ρ2(Y ) d(div ρ2(Z))

)

·

(∫
Sn−2

n+1∑
i=3

(−1)i−3f idf3 ∧ · · · ∧ d̂f i ∧ · · · ∧ dfn+1

)

= (−1)n
2n+1π

n(n2 − 1)

∫
Sn−2

f̃∗ωn−1,

where f̃ = (f3, . . . , fn+1) : Sn−2 → Rn−1, ωn−1 =

n−1∑
i=1

(−1)i+1xidx1 ∧ · · · ∧ d̂xi ∧

· · · ∧ dxn−1 and the symbol ‘̂’ means omission. Note that if we set

V =

∫
Sn−2

f̃∗ωn−1,

then V is a generalization of the volume of the region bounded by f̃(Sn−2). We have

gv(W,F) = (−1)n
2n+1π V

n(n2 − 1)

∫
N

volN ,

where N = (Γ\SL(2;R)/SO(2))× Tn−1 = Σ× Tn−1 and volN denotes the volume

form of N , so that gv(W,F) attains any value in R as fi’s vary.
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